21 research outputs found

    A first-in-human clinical study of a new SP-B and SP-C enriched synthetic surfactant (CHF5633) in preterm babies with respiratory distress syndrome

    Get PDF
    Objective CHF5633 (Chiesi Farmaceutici S.p.A., Parma, Italy) is the first fully synthetic surfactant enriched by peptide analogues of two human surfactant proteins. We planned to assess safety and tolerability of CHF5633 and explore preliminary efficacy. Design Multicentre cohort study. Patients Forty infants from 27+0 to 33+6 weeks gestation with respiratory distress syndrome requiring fraction of inspired oxygen (FiO2) ≥0.35 were treated with a single dose of CHF5633 within 48 hours after birth. The first 20 received 100 mg/kg and the second 20 received 200 mg/kg. Outcome measures Adverse events (AEs) and adverse drug reactions (ADRs) were monitored with complications of prematurity considered AEs if occurring after dosing. Systemic absorption and immunogenicity were assessed. Efficacy was assessed by change in FiO2 after dosing and need for poractant-alfa rescue. Results Rapid and sustained improvements in FiO2 were observed in 39 (98%) infants. One responded neither to CHF5633 nor two poractant-alfa doses. A total of 79 AEs were experienced by 19 infants in the 100 mg/kg cohort and 53 AEs by 20 infants in the 200 mg/kg cohort. Most AEs were expected complications of prematurity. Two unrelated serious AEs occurred in the second cohort. One infant died of necrotising enterocolitis and another developed viral bronchiolitis after discharge. The single ADR was an episode of transient endotracheal tube obstruction following a 200 mg/kg dose. Neither systemic absorption, nor antibody development to either peptide was detected. Conclusions Both CHF5633 doses were well tolerated and showed promising clinical efficacy profile. These encouraging data provide a basis for ongoing randomised controlled trials

    Synthetic pulmonary surfactant : Effects of surfactant proteins B and C and their analogues

    Get PDF
    Pulmonary surfactant is a lipid/protein mixture lining the air-liquid interface in the alveoli. Its main function is to lower surface tension during respiration and thereby prevent alveolar collapse at end-expiration. Surfactant deficiency, especially common in prematurely born babies, is the main cause of respiratory distress syndrome (RDS). This disease is treated with exogenous surfactant replacement using animal-derived modified natural surfactants. Production of these is quite expensive and the supply is limited. In addition there is a possible risk of transmitted infectious agents, which is why synthetic alternatives are under development. We investigated the effect of an SP-C analogue, SP-C33, in phospholipids as a synthetic alternative. By circular dichroism and infrared spectroscopy we found that SP-C33 shows secondary structure and orientation in a phospholipid bilayer similar to SP-C. 1-2% of this analogue in a mixture of dipalmitoylphosphatidylcholine (DPPC)/palmitoyloleoylphosphatidylglycerol (POPG) (68:31 by weight) showed tidal volumes similar to those obtained by the modified natural surfactant Curosurf when used in ventilated prematurely born rabbits. When ventilated without positive end-expiratory pressure, SP-C33 surfactant shows lower lung gas volumes (LGV) compared to Curosurf, indicating that some component in the latter is needed to stabilize the lung at end-expiration. Our study shows that inclusion of both SP-C33 and SP-B, or an analogue thereof, significantly increases LGV. This indicates that SP-B and SP-C exerts different tasks in surfactant and that both proteins are necessary to obtain alveolar stability. The SP-B analogue Mini-B shows good surfactant activity both in vitro and in vivo and may be a good replacement in synthetic surfactant. C-terminal modifications of SP-C33 do not alter its surfactant properties, indicating that mobility inside the membrane probably is not necessary for surfactant activity. A synthetic surfactant consisting of 2% SP-C33 (by weight) in 80mg/ml DPPC/POPG (68:31 w/w) and an SP-B analogue, possibly Mini-B, may be a good replacement for modified natural surfactant in future treatment of neonatal RDS

    Synthetic Surfactant Based on Analogues of SP-B and SP-C Is Superior to Single-Peptide Surfactants in Ventilated Premature Rabbits

    No full text
    Background: Respiratory distress syndrome (RDS) is currently treated with surfactant preparations obtained from natural sources and attempts to develop equally active synthetic surfactants have been unsuccessful. One difference in composition is that naturally derived surfactants contain the two hydrophobic proteins SP-B and SP-C while synthetic preparations contain analogues of either SP-B or SP-C. It was recently shown that both SP-B and SP-C (or SP-C33, an SP-C analogue) are necessary to establish alveolar stability at end-expiration in a rabbit RDS model, as reflected by high lung gas volumes without application of positive end-expiratory pressure. Objectives: To study the efficacy of fully synthetic surfactants containing analogues of both SP-B and SP-C compared to surfactants with only one protein analogue. Methods: Premature newborn rabbits, treated with synthetic surfactants, were ventilated for 30 min without positive end-expiratory pressure. Tidal volumes as well as lung gas volumes at end-expiration were determined. Results: Treatment with 2% Mini-B (a short-cut version of SP-B) and 2% SP-C33, or its C-terminally truncated form SP-C30, in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol, 68: 31 (w/w) resulted in median lung gas volumes of 8-9 ml/kg body weight, while animals treated with 2% Mini-B surfactant or 2% SPC33/SP-C30 surfactant had lung gas volumes of 3-4 ml/kg, and those treated with Curosurf, a porcine surfactant, 15-17 ml/kg. In contrast, mixing SP-C33 with peptides with different distributions of positively charged and hydrophobic residues did not improve lung gas volumes. Conclusions: The data indicate that synthetic surfactants containing analogues of both SP-B and SP-C might be superior to single-peptide surfactants in the treatment of RDS. Copyright (C) 2010 S. Karger AG, BaselDevelopmen

    Aerosol delivery of synthetic lung surfactant

    No full text
    Background. Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in premature infants with respiratory distress syndrome due to lack of lung surfactant. If this approach fails, the next step is often intubation, mechanical ventilation (MV) and intratracheal instillation of clinical lung surfactant.Objective. To investigate whether aerosol delivery of advanced synthetic lung surfactant, consisting of peptide mimics of surfactant proteins B and C (SP-B and SP-C) and synthetic lipids, during nCPAP improves lung function in surfactant-deficient rabbits.Methods. Experimental synthetic lung surfactants were produced by formulating 3% Super Mini-B peptide (SMB surfactant), a highly surface active SP-B mimic, and a combination of 1.5% SMB and 1.5% of the SP-C mimic SP-Css ion-lock 1 (BC surfactant), with a synthetic lipid mixture. After testing aerosol generation using a vibrating membrane nebulizer and aerosol conditioning (particle size, surfactant composition and surface activity), we investigated the effects of aerosol delivery of synthetic SMB and BC surfactant preparations on oxygenation and lung compliance in saline-lavaged, surfactant-deficient rabbits, supported with either nCPAP or MV.Results. Particle size distribution of the surfactant aerosols was within the 1–3 µm distribution range and surfactant activity was not affected by aerosolization. At a dose equivalent to clinical surfactant therapy in premature infants (100 mg/kg), aerosol delivery of both synthetic surfactant preparations led to a quick and clinically relevant improvement in oxygenation and lung compliance in the rabbits. Lung function recovered to a greater extent in rabbits supported with MV than with nCPAP. BC surfactant outperformed SMB surfactant in improving lung function and was associated with higher phospholipid values in bronchoalveolar lavage fluid; these findings were irrespective of the type of ventilatory support (nCPAP or MV) used.Conclusions. Aerosol delivery of synthetic lung surfactant with a combination of highly active second generation SP-B and SP-C mimics was effective as a therapeutic approach towards relieving surfactant deficiency in spontaneously breathing rabbits supported with nCPAP. To obtain similar results with nCPAP as with intratracheal instillation, higher dosage of synthetic surfactant and reduction of its retention by the delivery circuit will be needed to increase the lung dose

    In vitro and in vivo comparison between poractant alfa and the new generation synthetic surfactant CHF5633.

    Get PDF
    CHF5633 is a new generation synthetic surfactant containing both SP-B and SP-C analogues developed for the treatment of respiratory distress syndrome. Here, the optimal dose and its performance in comparison to the animal-derived surfactant poractant alfa were investigated

    Data S1: Captive bubble surfactometry measurements (pages 1 and 2) and in vivo lung function data (pages 3 and 4)

    Get PDF
    Background This study examines the biophysical and preclinical pulmonary activity of synthetic lung surfactants containing novel phospholipase-resistant phosphonolipids or synthetic glycerophospholipids combined with Super Mini-B (S-MB) DATK and/or SP-Css ion-lock 1 peptides that replicate the functional biophysics of surfactant proteins (SP)-B and SP-C. Phospholipase-resistant phosphonolipids used in synthetic surfactants are DEPN-8 and PG-1, molecular analogs of dipalmitoyl phosphatidylcholine (DPPC) and palmitoyl-oleoyl phosphatidylglycerol (POPG), while glycerophospholipids used are active lipid components of native surfactant (DPPC:POPC:POPG 5:3:2 by weight). The objective of the work is to test whether these novel lipid/peptide synthetic surfactants have favorable preclinical activity (biophysical, pulmonary) for therapeutic use in reversing surfactant deficiency or dysfunction in lung disease or injury. Methods Surface activity of synthetic lipid/peptide surfactants was assessed in vitro at 37 °C by measuring adsorption in a stirred subphase apparatus and dynamic surface tension lowering in pulsating and captive bubble surfactometers. Shear viscosity was measured as a function of shear rate on a Wells-Brookfield micro-viscometer. In vivo pulmonary activity was determined by measuring lung function (arterial oxygenation, dynamic lung compliance) in ventilated rats and rabbits with surfactant deficiency/dysfunction induced by saline lavage to lower arterial PO2 to <100 mmHg, consistent with clinical acute respiratory distress syndrome (ARDS). Results Synthetic surfactants containing 5:3:2 DPPC:POPC:POPG or 9:1 DEPN-8:PG-1 combined with 3% (by wt) of S-MB DATK, 3% SP-Css ion-lock 1, or 1.5% each of both peptides all adsorbed rapidly to low equilibrium surface tensions and also reduced surface tension to ≤1 mN/m under dynamic compression at 37 °C. However, dual-peptide surfactants containing 1.5% S-MB DATK + 1.5% SP-Css ion-lock 1 combined with 9:1 DEPN-8:PG-1 or 5:3:2 DPPC:POPC:POPG had the greatest in vivo activity in improving arterial oxygenation and dynamic lung compliance in ventilated animals with ARDS. Saline dispersions of these dual-peptide synthetic surfactants were also found to have shear viscosities comparable to or below those of current animal-derived surfactant drugs, supporting their potential ease of deliverability by instillation in future clinical applications. Discussion Our findings support the potential of dual-peptide synthetic lipid/peptide surfactants containing S-MB DATK + SP-Css ion-lock 1 for treating diseases of surfactant deficiency or dysfunction. Moreover, phospholipase-resistant dual-peptide surfactants containing DEPN-8/PG-1 may have particular applications in treating direct forms of ARDS where endogenous phospholipases are present in the lungs
    corecore