526 research outputs found
Warp-X: a new exascale computing platform for beam-plasma simulations
Turning the current experimental plasma accelerator state-of-the-art from a
promising technology into mainstream scientific tools depends critically on
high-performance, high-fidelity modeling of complex processes that develop over
a wide range of space and time scales. As part of the U.S. Department of
Energy's Exascale Computing Project, a team from Lawrence Berkeley National
Laboratory, in collaboration with teams from SLAC National Accelerator
Laboratory and Lawrence Livermore National Laboratory, is developing a new
plasma accelerator simulation tool that will harness the power of future
exascale supercomputers for high-performance modeling of plasma accelerators.
We present the various components of the codes such as the new Particle-In-Cell
Scalable Application Resource (PICSAR) and the redesigned adaptive mesh
refinement library AMReX, which are combined with redesigned elements of the
Warp code, in the new WarpX software. The code structure, status, early
examples of applications and plans are discussed
Drift dependence of optimal trade execution strategies under transient price impact
We give a complete solution to the problem of minimizing the expected
liquidity costs in presence of a general drift when the underlying market
impact model has linear transient price impact with exponential resilience. It
turns out that this problem is well-posed only if the drift is absolutely
continuous. Optimal strategies often do not exist, and when they do, they
depend strongly on the derivative of the drift. Our approach uses elements from
singular stochastic control, even though the problem is essentially
non-Markovian due to the transience of price impact and the lack in Markovian
structure of the underlying price process. As a corollary, we give a complete
solution to the minimization of a certain cost-risk criterion in our setting
Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality
Background. Diabetes mellitus is linked to premature mortality of virtually all causes. Furin is a proprotein convertase broadly involved in the maintenance of cellular homeostasis; however, little is known about its role in the development of diabetes mellitus and risk of premature mortality. Objectives. To test if fasting plasma concentration of furin is associated with the development of diabetes mellitus and mortality. Methods. Overnight fasted plasma furin levels were measured at baseline examination in 4678 individuals from the population-based prospective Malmo Diet and Cancer Study. We studied the relation of plasma furin levels with metabolic and hemodynamic traits. We used multivariable Cox proportional hazards models to investigate the association between baseline plasma furin levels and incidence of diabetes mellitus and mortality during 21.3-21.7 years follow-up. Results. An association was observed between quartiles of furin concentration at baseline and body mass index, blood pressure and plasma concentration of glucose, insulin, LDL and HDL cholesterol (vertical bar 0.11 vertical bar Conclusion. Individuals with high plasma furin concentration have a pronounced dysmetabolic phenotype and elevated risk of diabetes mellitus and premature mortality.Peer reviewe
Free Energy Minimizers for a Two--Species Model with Segregation and Liquid-Vapor Transition
We study the coexistence of phases in a two--species model whose free energy
is given by the scaling limit of a system with long range interactions (Kac
potentials) which are attractive between particles of the same species and
repulsive between different species.Comment: 32 pages, 1 fig, plain tex, typeset twic
ASCR/HEP Exascale Requirements Review Report
This draft report summarizes and details the findings, results, and
recommendations derived from the ASCR/HEP Exascale Requirements Review meeting
held in June, 2015. The main conclusions are as follows. 1) Larger, more
capable computing and data facilities are needed to support HEP science goals
in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of
the demand at the 2025 timescale is at least two orders of magnitude -- and in
some cases greater -- than that available currently. 2) The growth rate of data
produced by simulations is overwhelming the current ability, of both facilities
and researchers, to store and analyze it. Additional resources and new
techniques for data analysis are urgently needed. 3) Data rates and volumes
from HEP experimental facilities are also straining the ability to store and
analyze large and complex data volumes. Appropriately configured
leadership-class facilities can play a transformational role in enabling
scientific discovery from these datasets. 4) A close integration of HPC
simulation and data analysis will aid greatly in interpreting results from HEP
experiments. Such an integration will minimize data movement and facilitate
interdependent workflows. 5) Long-range planning between HEP and ASCR will be
required to meet HEP's research needs. To best use ASCR HPC resources the
experimental HEP program needs a) an established long-term plan for access to
ASCR computational and data resources, b) an ability to map workflows onto HPC
resources, c) the ability for ASCR facilities to accommodate workflows run by
collaborations that can have thousands of individual members, d) to transition
codes to the next-generation HPC platforms that will be available at ASCR
facilities, e) to build up and train a workforce capable of developing and
using simulations and analysis to support HEP scientific research on
next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio
The stability for the Cauchy problem for elliptic equations
We discuss the ill-posed Cauchy problem for elliptic equations, which is
pervasive in inverse boundary value problems modeled by elliptic equations. We
provide essentially optimal stability results, in wide generality and under
substantially minimal assumptions. As a general scheme in our arguments, we
show that all such stability results can be derived by the use of a single
building brick, the three-spheres inequality.Comment: 57 pages, review articl
Recommended from our members
Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility.
To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry
Common genetic determinants of lung function, subclinical atherosclerosis and risk of coronary artery disease
Chronic obstructive pulmonary disease (COPD) independently associates with an increased risk of coronary artery disease (CAD), but it has not been fully investigated whether this co-morbidity involves shared pathophysiological mechanisms. To identify potential common pathways across the two diseases, we tested all recently published single nucleotide polymorphisms (SNPs) associated with human lung function (spirometry) for association with carotid intima-media thickness (cIMT) in 3,378 subjects with multiple CAD risk factors, and for association with CAD in a case-control study of 5,775 CAD cases and 7,265 controls. SNPs rs2865531, located in the CFDP1 gene, and rs9978142, located in the KCNE2 gene, were significantly associated with CAD. In addition, SNP rs9978142 and SNP rs3995090 located in the HTR4 gene, were associated with average and maximal cIMT measures. Genetic risk scores combining the most robustly spirometry-associated SNPs from the literature were modestly associated with CAD, (odds ratio (OR) (95% confidence interval (CI95) = 1.06 (1.03, 1.09); P-value = 1.5×10-4, per allele). In conclusion, our study suggests that some genetic loci implicated in determining human lung function also influence cIMT and susceptibility to CAD. The present results should help elucidate the molecular underpinnings of the co-morbidity observed across COPD and CAD
Genetic Prediction of Future Type 2 Diabetes
BACKGROUND: Type 2 diabetes (T2D) is a multifactorial disease in which environmental triggers interact with genetic variants in the predisposition to the disease. A number of common variants have been associated with T2D but our knowledge of their ability to predict T2D prospectively is limited. METHODS AND FINDINGS: By using a Cox proportional hazard model, common variants in the PPARG (P12A), CAPN10 (SNP43 and 44), KCNJ11 (E23K), UCP2 (−866G>A), and IRS1 (G972R) genes were studied for their ability to predict T2D in 2,293 individuals participating in the Botnia study in Finland. After a median follow-up of 6 y, 132 (6%) persons developed T2D. The hazard ratio for risk of developing T2D was 1.7 (95% confidence interval [CI] 1.1–2.7) for the PPARG PP genotype, 1.5 (95% CI 1.0–2.2) for the CAPN10 SNP44 TT genotype, and 2.6 (95% CI 1.5–4.5) for the combination of PPARG and CAPN10 risk genotypes. In individuals with fasting plasma glucose ≥ 5.6 mmol/l and body mass index ≥ 30 kg/m(2), the hazard ratio increased to 21.2 (95% CI 8.7–51.4) for the combination of the PPARG PP and CAPN10 SNP43/44 GG/TT genotypes as compared to those with the low-risk genotypes with normal fasting plasma glucose and body mass index < 30 kg/m(2). CONCLUSION: We demonstrate in a large prospective study that variants in the PPARG and CAPN10 genes predict future T2D. Genetic testing might become a future approach to identify individuals at risk of developing T2D
- …