45,446 research outputs found
WAVELET BASED NONLINEAR SEPARATION OF IMAGES
This work addresses a real-life problem corresponding
to the separation of the nonlinear mixture of images which
arises when we scan a paper document and the image from
the back page shows through.
The proposed solution consists of a non-iterative procedure
that is based on two simple observations: (1) the high
frequency content of images is sparse, and (2) the image
printed on each side of the paper appears more strongly in
the mixture acquired from that side than in the mixture acquired from the opposite side.
These ideas had already been used in the context of nonlinear denoising source separation (DSS). However, in that method the degree of separation achieved by applying these ideas was relatively weak, and the separation had to be improved by iterating within the DSS scheme. In this paper the application of these ideas is improved by changing the competition function and the wavelet transform that is used. These improvements allow us to achieve a good separation in one shot, without the need to integrate the process into an iterative DSS scheme. The resulting separation process is both nonlinear and non-local.
We present experimental results that show that the method
achieves a good separation quality
On Gravity localization under Lorentz Violation in warped scenario
Recently Rizzo studied the Lorentz Invariance Violation (LIV) in a brane
scenario with one extra dimension where he found a non-zero mass for the
four-dimensional graviton. This leads to the conclusion that five-dimensional
models with LIV are not phenomenologically viable. In this work we re-examine
the issue of Lorentz Invariance Violation in the context of higher dimensional
theories. We show that a six-dimensional geometry describing a string-like
defect with a bulk-dependent cosmological constant can yield a massless 4D
graviton, if we allow the cosmological constant variation along the bulk, and
thus can provides a phenomenologically viable solution for the gauge hierarchy
problem.Comment: 13 pages, 2 figures. To appear in Physics Letters
Brane bounce-type configurations in a string-like scenario
Brane world six dimensional scenarios with string like metric has been
proposed to alleviate the problem of field localization. However, these models
have been suffering from some drawbacks related with energy conditions as well
as from difficulties to find analytical solutions. In this work, we propose a
model where a brane is made of a scalar field with bounce-type configurations
and embedded in a bulk with a string-like metric. This model produces a sound
AdS scenario where none of the important physical quantities is infinite. Among
these quantities are the components of the energy momentum tensor, which have
its positivity ensured by a suitable choice of the bounce configurations.
Another advantage of this model is that the warp factor can be obtained
analytically from the equations of motion for the scalar field, obtaining as a
result a thick brane configuration, in a six dimensional context. Moreover, the
study of the scalar field localization in these scenario is done.Comment: 15 pages, 5 figures. To appear in Physics Letters
- …