6 research outputs found

    Numerical study of the equation of state for two flavor QCD at finite density

    Full text link
    We discuss the equation of state for 2 flavor QCD at non-zero temperature and density. Derivatives of lnZ\ln Z with respect to quark chemical potential μq\mu_q up to fourth order are calculated, enabling estimates of the pressure, quark number density and associated susceptibilities as functions of μq\mu_q via a Taylor series expansion. It is found that the fluctuations in the quark number density increase in the vicinity of the phase transition temperature and the susceptibilities start to develop a pronounced peak as μq\mu_q is increased. This suggests the presence of a critical endpoint in the (T,μq)(T, \mu_q) plane.Comment: 5 pages, 4 figures, Talk at Confinement 200

    QCD at non-zero chemical potential and temperature from the lattice

    Full text link
    A study of QCD at non-zero chemical potential, mu, and temperature, T, is performed using the lattice technique. The transition temperature (between the confined and deconfined phases) is determined as a function of mu and is found to be in agreement with other work. In addition the variation of the pressure and energy density with mu is obtained for small positive mu. These results are of particular relevance for heavy-ion collision experiments.Comment: Invited paper presented at the Joint Workshop on Physics at the Japanese Hadron Facility, March 2002, Adelaide. 10 pages, uses ws-procs9x6.cls style file (provided

    The Equation of State for Two Flavor QCD at Non-zero Chemical Potential

    Full text link
    We present results of a simulation of QCD on a 4x16^3 lattice with 2 continuum flavors of p4-improved staggered fermion with mass m/T=0.4. Derivatives of the thermodynamic grand potential with respect to quark chemical potential mu_q up to fourth order are calculated, enabling estimates of the pressure, quark number density and associated susceptibilities as functions of mu_q via Taylor series expansion. Discretisation effects associated with various staggered fermion formulations are discussed in some detail. In addition it is possible to estimate the radius of convergence of the expansion as a function of temperature. We also discuss the calculation of energy and entropy densities which are defined via mixed derivatives of the thermodynamic grand potential with respect to the bare couplings and quark masses.Comment: 30 pages, LaTeX2e File, 17 Postscript figure

    The QCD thermal phase transition in the presence of a small chemical potential

    Get PDF
    We propose a new method to investigate the thermal properties of QCD with a small quark chemical potential μ\mu. Derivatives of the phase transition point with respect to μ\mu are computed at μ=0\mu=0 for 2 flavors of p-4 improved staggered fermions with ma=0.1,0.2ma=0.1,0.2 on a 163×416^3\times4 lattice. The resulting Taylor expansion is well behaved for the small values of μq/Tc0.1\mu_{\rm q}/T_c\sim0.1 relevant for RHIC phenomenology, and predicts a critical curve Tc(μ)T_c(\mu) in reasonable agreement with estimates obtained using exact reweighting. In addition, we contrast the case of isoscalar and isovector chemical potentials, quantify the effect of μ0\mu\not=0 on the equation of state, and comment on the complex phase of the fermion determinant in QCD with μ0\mu\not=0.Comment: 26 pages, 25 figures, minor modificatio

    News from Lattice QCD on Heavy Quark Potentials and Spectral Functions of Heavy Quark States

    Full text link
    We discuss recent lattice results on in-medium properties of hadrons and focus on thermal properties of heavy quark bound states. We will clarify the relation between heavy quark free energies and potentials used to analyze the melting of heavy quark bound states. Furthermore, we present calculations of meson spectral functions which indicate that the charmonium ground states, J/psi and eta_c, persist in the quark gluon plasma as well defined resonances with no significant change of their zero temperature masses at least up to T ~ 1.5 T_c. We also briefly comment on the current status of lattice calculations at non-vanishing baryon number density.Comment: Plenary talk at the 17th International Conference on Ultra Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004), Oakland, California, 11-17 Jan 2004. Submitted to J.Phys.
    corecore