1,753 research outputs found

    Future of oncologic photodynamic therapy

    Get PDF
    Photodynamic therapy (PDT) is a tumor-ablative and function-sparing oncologic\ud intervention. The relative simplicity of photosensitizer application followed by light\ud activation resulting in the cytotoxic and vasculartoxic photodynamic reaction\ud has allowed PDT to reach a worldwide audience. With several commercially\ud available photosensitizing agents now on the market, numerous well designed\ud clinical trials have demonstrated the efficacy of PDT on various cutaneous and\ud deep tissue tumors. However, current photosensitizers and light sources still have\ud a number of limitations. Future PDT will build on those findings to allow development\ud and refinement of more optimal therapeutic agents and illumination devices.\ud This article reviews the current state of the art and limitations of PDT, and highlight\ud the progress being made towards the future of oncologic PDT

    American Ginseng Modifies 137Cs-Induced DNA Damage and Oxidative Stress in Human Lymphocytes

    Get PDF
    The multifold bioactive medicinal properties of ginseng have been closely linked to its antioxidative ability, which is related to its ginsenoside content. Since the key mechanism of radiation-induced cell death and tissue damage is the generation of reactive oxygen species (ROS) that attack cellular DNA, this study focuses on the impact of a standardized North American ginseng extract (NAGE) on 137Cs-induced oxidative stress in human peripheral lymphocytes (PBL) obtained from 10 healthy individuals (6M/4F), 42.7 ± 4.6 years of age. At two different time points (0 h and 24 h before irradiation), we applied NAGE (250 - 1000 µg ml-1) to mononuclear cell cultures for cytokinesisblock micronuclei (MN) assay and determination of the state of oxidative stress in PBL. We found that at both time points, NAGE significantly reduced the MN yields in PBL after irradiation (1 and 2 Gy) in a concentration-dependent manner (P<0.001). Compared with radiation alone, the maximum reduction rate of MN yield were 51.1% and 49.1% after 1 Gy and 2 Gy exposures, respectively. We also found that before irradiation the presence of NAGE in the culture medium resulted in a significant increased intracellular total antioxidant capacity (TAC) in PBL. At both time points, the increment of 137Cs-induced MN yields in PBL was positively correlated with the increment of intracellular ROS production (R = 0.6 - 0.7, P = 0.002), but negatively correlated with the reduction of TAC levels (R = -0.4 - 0.5, P = 0.02 - 0.004). However, the presence of NAGE in the culture medium significantly increased the TAC levels, while concomitantly decreasing both ROS production and MN yields in PBL (P<0.001). Our findings that NAGE is effective in protecting human PBL against radiation-induced oxidative stress should encourage further in vivo study of dietary supplementation with NAGE as an effective natural radiation countermeasure. Originally published Open Nuclear Medicine Journal Vol 1 No. 1, 2009

    Total error shift patterns for daily CT on rails image-guided radiotherapy to the prostate bed

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the daily total error shift patterns on post-prostatectomy patients undergoing image guided radiotherapy (IGRT) with a diagnostic quality computer tomography (CT) on rails system.</p> <p>Methods</p> <p>A total of 17 consecutive post-prostatectomy patients receiving adjuvant or salvage IMRT using CT-on-rails IGRT were analyzed. The prostate bed's daily total error shifts were evaluated for a total of 661 CT scans.</p> <p>Results</p> <p>In the right-left, cranial-caudal, and posterior-anterior directions, 11.5%, 9.2%, and 6.5% of the 661 scans required no position adjustments; 75.3%, 66.1%, and 56.8% required a shift of 1 - 5 mm; 11.5%, 20.9%, and 31.2% required a shift of 6 - 10 mm; and 1.7%, 3.8%, and 5.5% required a shift of more than 10 mm, respectively. There was evidence of correlation between the x and y, x and z, and y and z axes in 3, 3, and 3 of 17 patients, respectively. Univariate (ANOVA) analysis showed that the total error pattern was random in the x, y, and z axis for 10, 5, and 2 of 17 patients, respectively, and systematic for the rest. Multivariate (MANOVA) analysis showed that the (x,y), (x,z), (y,z), and (x, y, z) total error pattern was random in 5, 1, 1, and 1 of 17 patients, respectively, and systematic for the rest.</p> <p>Conclusions</p> <p>The overall daily total error shift pattern for these 17 patients simulated with an empty bladder, and treated with CT on rails IGRT was predominantly systematic. Despite this, the temporal vector trends showed complex behaviors and unpredictable changes in magnitude and direction. These findings highlight the importance of using daily IGRT in post-prostatectomy patients.</p

    Modeling of Non-Small Cell Lung Cancer Volume Changes during CT-Based Image Guided Radiotherapy: Patterns Observed and Clinical Implications

    Get PDF
    Background. To characterize the lung tumor volume response during conventional and hypofractionated radiotherapy (RT) based on diagnostic quality CT images prior to each treatment fraction. Methods. Out of 26 consecutive patients who had received CT-on-rails IGRT to the lung from 2004 to 2008, 18 were selected because they had lung lesions that could be easily distinguished. The time course of the tumor volume for each patient was individually analyzed using a computer program. Results. The model fits of group L (conventional fractionation) patients were very close to experimental data, with a median Δ% (average percent difference between data and fit) of 5.1% (range 3.5–10.2%). The fits obtained in group S (hypofractionation) patients were generally good, with a median Δ% of 7.2% (range 3.7–23.9%) for the best fitting model. Four types of tumor responses were observed—Type A: “high� kill and “slow� dying rate; Type B: “high� kill and “fast� dying rate; Type C: “low� kill and “slow� dying rate; and Type D: “low� kill and “fast� dying rate. Conclusions. The models used in this study performed well in fitting the available dataset. The models provided useful insights into the possible underlying mechanisms responsible for the RT tumor volume response

    Radioprotective Effect of American Ginseng on Human Lymphocytes at 90 Minutes Post-irradiation: A Study of 40 Cases

    Get PDF
    Backgroundâ Ionizing radiation (IR) initiates intracellular oxidative stress through enhanced formation of reactive oxygen species (ROS) that attack DNA leading to cell death. As the diversity of IR applied in medicine, agriculture, industry, and the growing threats of global terrorism, the acquisition of radioprotectors is an urgent need for the nation. However, the applicability of radioprotectors currently under investigation is limited due to their inherent toxicity. Objectiveâ This study investigated the effect of a standardized North American ginseng extract (NAGE, total ginsenoside content: 11.7%) on DNA damage in human lymphocytes at 90 min postirradiation. Designâ With the application of NAGE (250 â 1000 μg mlâ 1) at 90 min post-irradiation (1 and 2 Gy), DNA damage in lymphocytes obtained from 40 healthy individuals was evaluated by cytokinesis-block micronucleus (CBMN) assay. Similar experiments were also performed in lymphocytes treated with WR-1065 (1 mM or 3mM). In addition, before and after irradiation, lymphocytes obtained from 10 individuals were measured for their total antioxidant capacity (TAC) and the reactive oxygen species (ROS). Resultsâ The significant effect of NAGE against 137Cs-induced MN in lymphocytes is concentration-dependent. NAGE (750 μg mlâ 1) reduced MN yield by 50.7% after 1 Gy and 35.9% after 2 Gy exposures, respectively; these results were comparable to that of WR-1065. Further, we also found that NAGE reduces MN yield and ROS but increases TAC in lymphocytes. Conclusionsâ Our results suggest that NAGE is a relatively non-toxic natural compound that holds radioprotective potential in human lymphocytes even when applied at 90 min post-irradiation. One of the radioprotective mechanisms may be mediated through the scavenging of free radicals and enhancement of the intracellular TAC. Originally published Journal of Alternative and Complementary Medicine Vol. 16, No. 5 2010

    Nomenclature for kidney function and disease: report of a Kidney Disease:Improving Global Outcomes (KDIGO) Consensus Conference

    Get PDF
    The worldwide burden of kidney disease is rising, but public awareness remains limited, underscoring the need for more effective communication by stakeholders in the kidney health community. Despite this need for clarity, the nomenclature for describing kidney function and disease lacks uniformity. In June 2019, Kidney Disease: Improving Global Outcomes (KDIGO) convened a Consensus Conference with the goal of standardizing and refining the nomenclature used in the English language to describe kidney function and disease, and of developing a glossary that could be used in scientific publications. Guiding principles of the conference were that the revised nomenclature should be patient-centered, precise, and consistent with nomenclature used in the KDIGO guidelines. Conference attendees reached general consensus on the following recommendations: (i) to use "kidney" rather than "renal" or "nephro-" when referring to kidney disease and kidney function; (ii) to use "kidney failure" with appropriate descriptions of presence or absence of symptoms, signs, and treatment, rather than "end-stage kidney disease"; (iii) to use the KDIGO definition and classification of acute kidney diseases and disorders (AKD) and acute kidney injury (AKI), rather than alternative descriptions, to define and classify severity of AKD and AKI; (iv) to use the KDIGO definition and classification of chronic kidney disease (CKD) rather than alternative descriptions to define and classify severity of CKD; and (v) to use specific kidney measures, such as albuminuria or decreased glomerular filtration rate (GFR), rather than "abnormal" or "reduced" kidney function to describe alterations in kidney structure and function. A proposed 5-part glossary contains specific items for which there was general agreement. Conference attendees acknowledged limitations of the recommendations and glossary, but they considered standardization of scientific nomenclature to be essential for improving communication

    Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The t t-bar production cross section (sigma[t t-bar]) is measured in proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS experiment, corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurement is performed in events with two leptons (electrons or muons) in the final state, at least two jets identified as jets originating from b quarks, and the presence of an imbalance in transverse momentum. The measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/- 2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction of the standard model.Comment: Replaced with published version. Included journal reference and DO

    Diacylglycerol kinase β promotes dendritic outgrowth and spine maturation in developing hippocampal neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diacylglycerol kinase (DGK) is an enzyme that phosphorylates diacylglycerol to phosphatidic acid and comprises multiple isozymes of distinct properties. Of DGKs, mRNA signal for DGKβ is strongly detected in the striatum, and one of the transcripts derived from the human DGKβ locus is annotated in GenBank as being differentially expressed in bipolar disorder patients. Recently, we have reported that DGKβ is expressed in medium spiny neurons of the striatum and is highly concentrated at the perisynapse of dendritic spines. However, it remains elusive how DGKβ is implicated in pathophysiological role in neurons at the cellular level.</p> <p>Results</p> <p>In the present study, we investigated the expression and subcellular localization of DGKβ in the hippocampus, together with its functional implication using transfected hippocampal neurons. DGKβ is expressed not only in projection neurons but also in interneurons and is concentrated at perisynaptic sites of asymmetrical synapses. Overexpression of wild-type DGKβ promotes dendrite outgrowth at 7 d in <it>vitro </it>(DIV) and spine maturation at 14 DIV in transfected hippocampal neurons, although its kinase-dead mutant has no effect.</p> <p>Conclusion</p> <p>In the hippocampus, DGKβ is expressed in both projection neurons and interneurons and is accumulated at the perisynapse of dendritic spines in asymmetrical synapses. Transfection experiments suggest that DGKβ may be involved in the molecular machineries of dendrite outgrowth and spinogenesis through its kinase activity.</p

    Machine learning uncovers the most robust self-report predictors of relationship quality across 43 longitudinal couples studies

    Get PDF
    Given the powerful implications of relationship quality for health and well-being, a central mission of relationship science is explaining why some romantic relationships thrive more than others. This large-scale project used machine learning (i.e., Random Forests) to 1) quantify the extent to which relationship quality is predictable and 2) identify which constructs reliably predict relationship quality. Across 43 dyadic longitudinal datasets from 29 laboratories, the top relationship-specific predictors of relationship quality were perceived-partner commitment, appreciation, sexual satisfaction, perceived-partner satisfaction, and conflict. The top individual-difference predictors were life satisfaction, negative affect, depression, attachment avoidance, and attachment anxiety. Overall, relationship-specific variables predicted up to 45% of variance at baseline, and up to 18% of variance at the end of each study. Individual differences also performed well (21% and 12%, respectively). Actor-reported variables (i.e., own relationship-specific and individual-difference variables) predicted two to four times more variance than partner-reported variables (i.e., the partner’s ratings on those variables). Importantly, individual differences and partner reports had no predictive effects beyond actor-reported relationship-specific variables alone. These findings imply that the sum of all individual differences and partner experiences exert their influence on relationship quality via a person’s own relationship-specific experiences, and effects due to moderation by individual differences and moderation by partner-reports may be quite small. Finally, relationship-quality change (i.e., increases or decreases in relationship quality over the course of a study) was largely unpredictable from any combination of self-report variables. This collective effort should guide future models of relationships
    corecore