59,368 research outputs found
Research study of pressure instrumentation
To obtain a more vibration resistant pressure sensor for use on the Space Shuttle Main Engine, a proximity probe based, diaphragm type pressure sensor breadboard was developed. A fiber optic proximity probe was selected as the sensor. In combination with existing electronics, a thermal stability evaluation of the entire probe system was made. Based upon the results, a breadboard design of the pressure sensor and electronics was made and fabricated. A brief series of functional experiments was made with the breadboard to calibrate, thermally compensate, and linearize its response. In these experiments, the performance obtained in the temperature range of -320 F (liquid N2) to +200 F was comparable to that of the strain gage based sensor presently in use on the engine. In tests at NASA-Marshall Space Flight Center (MSFC), after some time at or near liquid nitrogen temperatures, the sensor output varied over the entire output range. These large spurious signals were attributed to condensation of air in the sensing gap. In the next phase of development of this sensor, an evaluation of fabrication techniques toward greater thermal and mechanical stability of the fiber probe assembly must be made. In addition to this, a positive optics to metal seal must be developed to withstand the pressure that would result from a diaphragm failure
Lunar landing flight research vehicle Patent
Lunar landing flight research vehicl
Pensions and Firm Performance
This paper examines how pension plans affect employee behavior and firm performance. Theoretically, the impact of pensions on firm performance cannot be predicted. Firms with pensions should have lower turnover rates and more efficient retirement decisions; their employees will be less likely to shirk. On the other hand, pension compensation is not very closely linked to worker performance and there is some risk that turnover may fall too much. The evidence indicates that although wages do not seem to fall with pension compensation, profit rates are not affected by pension coverage. This suggests that pension coverage is associated with higher productivity, a proposition that is supported by indirect evidence on pensions, turnover, and productivity but not by direct tests of how pension coverage and productivity are correlated.
Unions, Pension Wealth, and Age-Compensation Profiles
This paper examines the effect of unions on both the magnitude and distribution of pension benefits. Our empirical results show that beneficiaries in collectively bargained plans receive larger benefits when they retire, receive larger increases in their benefits after they retire, and retire at an earlier age than beneficiaries in other pension plans. As a result, the pension wealth of union beneficiaries is 50 to 109 percent greater than that of nonunion beneficiaries. Just as wage differentials within and across establishments are smaller among union workers, benefit differentials within and across cohorts of retirees are smaller among union beneficiaries. This results from the smaller weight given to salary average in determining initial benefits and the larger percentage increases given to those who have been retired the longest under post-retirement increases. The more compressed benefit structure under unionism causes the union-nonunion compensation (wages plus pension contributions) differential to decline more quickly than the union-nonunion wage differential over the life cycle.
Face-seal lubrication. 2: Theory of response to angular misalignement
A theoretical analysis was made of a hypothetical seal operating mode. The hypothetical seal model provides for three degrees of primary ring motion and includes the force and moments induced by primary ring response to seat angular misalignment. This ring response causes a relative angular misalignment between the faces of the primary seal. Hydrodynamic pressure generation is produced by this misalignment. The analysis is based on the Reynolds equation in short bearing form and on a balance of forces and moments that arise from hydrodynamic and secondary seal friction effects. A closed form solution was obtained that can be solved for film thickness and relative angular misalignment
Transition metal impurities in semiconductors
Crystal field theory applied transition metal impurities in semiconductor
Preliminary study of VTO thrust requirements for a V/STOL aircraft with lift plus lift/cruise propulsion
A preliminary assessment was made of the VTO thrust requirements for a supersonic (Type B) aircraft with a Lift plus Lift/Cruise propulsion system. A baseline aircraft with a takeoff gross weight (TOGW) of 13 608 kg (30,000 lb) was assumed. Pitch, roll, and yaw control thrusts (i.e., the thrusts needed for aircraft attitude control in the flight hover mode) were estimated based on a specified set of maneuver acceleration requirements for V/STOL aircraft. Other effects (such as installation losses, suckdown, reingestion, etc.), which add to the thrust requirements for VTO were also estimated. For the baseline aircraft, the excess thrust required for attitude control of the aircraft during VTO and flight hover was estimated to range from 36.9 to 50.9 percent of the TOGW. It was concluded that the total thrust requirements for the aircraft/propulsion system are large and significant. In order to achieve the performance expected of this aircraft/propulsion system, reductions must be made in the excess thrust requirements
Hole polaron formation and migration in olivine phosphate materials
By combining first principles calculations and experimental XPS measurements,
we investigate the electronic structure of potential Li-ion battery cathode
materials LiMPO4 (M=Mn,Fe,Co,Ni) to uncover the underlying mechanisms that
determine small hole polaron formation and migration. We show that small hole
polaron formation depends on features in the electronic structure near the
valence-band maximum and that, calculationally, these features depend on the
methodology chosen for dealing with the correlated nature of the
transition-metal d-derived states in these systems. Comparison with experiment
reveals that a hybrid functional approach is superior to GGA+U in correctly
reproducing the XPS spectra. Using this approach we find that LiNiPO4 cannot
support small hole polarons, but that the other three compounds can. The
migration barrier is determined mainly by the strong or weak bonding nature of
the states at the top of the valence band, resulting in a substantially higher
barrier for LiMnPO4 than for LiCoPO4 or LiFePO4
Spiral-grooved shaft seals substantially reduce leakage and wear
Rotating shaft seals used in space power systems have spiral grooves in one or both of the opposing seal faces. These grooves induce a pumping action which displaces the intervening fluid radially inward toward the shaft and counters the centrifugal forces which tend to displace the fluid outward
Slow light in degenerate Fermi gases
We investigate the effect of slow light propagating in a degenerate atomic
Fermi gas. In particular we use slow light with an orbital angular momentum. We
present a microscopic theory for the interplay between light and matter and
show how the slow light can provide an effective magnetic field acting on the
electrically neutral fermions, a direct analogy of the free electron gas in an
uniform magnetic field. As an example we illustrate how the corresponding de
Haas-van Alphen effect can be seen in a neutral gas of fermions.Comment: Slightly updated. Phys. Rev. Lett. 93, 033602 (2004
- …