8,881 research outputs found

    High Fidelity State Transfer Over an Unmodulated Linear XY Spin Chain

    Full text link
    We provide a class of initial encodings that can be sent with a high fidelity over an unmodulated, linear, XY spin chain. As an example, an average fidelity of ninety-six percent can be obtained using an eleven-spin encoding to transmit a state over a chain containing ten-thousand spins. An analysis of the magnetic field dependence is given, and conditions for field optimization are provided.Comment: Replaced with published version. 8 pages, 5 figure

    Septic shock: the changing Zeitgeist of management

    Get PDF
    Most interventions in critically unwell patients with septic shock are poorly supported by evidence, in part reflecting the difficulty of conducting trials in this heterogeneous group. Four important clinical trials in 2001-2 appeared to demonstrate mortality benefits associated with early goal-directed resuscitation, intensive glycaemic control, physiological-dose steroid replacement and activated protein C. However, recent evidence has not confirmed the beneficial effect of these interventions

    Evaporation of Lennard-Jones Fluids

    Full text link
    Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/TcT/T_c, where TcT_c is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.Comment: revised version, 15 pages, 15 figures, to appear in J. Chem. Phy
    • …
    corecore