1,388 research outputs found
Process for the preparation of polycarboranylphosphazenes
A process for the preparation of polycarboranylphosphazenes is described. Polydihalophosphazenes are allowed to react at ambient temperatures for at least one hour with a lithium carborane in a suitable inert solvent. The remaining chlorine substituents of the carboranyl polyphosphazene are then replaced with aryloxy or alkoxy groups to enhance moisture resistance. The polymers give a high char yield when exposed to extreme heat and flame and can be used as insulation
Carboranylcyclotriphosphazenes and their polymers
Carboranyl-substituted polyphosphazenes are prepared by heat polymerizing a carboranyl halocyclophosphazene at 250 C for about 120 hours in the absence of oxygen and moisture. The cyclophosphazene is obtained by allowing a lithium carborane, e.g., the reaction product of methyl-o-carborane with n-butyllithium in ethyl ether, to react with e.g., hexachlorocyclotriphosphazene at ambient temperatures and in anhydrous conditions. For greater stability in the presence of moisture, the chlorine substituents of the polymer are then replaced by aryloxy or alkoxy groups, such as CF3CH2O. The new substantially inorganic polymers are thermally stable materials which produce a high char yield when exposed to extreme temperatures, and can thus serve to insulate less heat and fire resistant substances
Why the Tsirelson bound?
Wheeler's question 'why the quantum' has two aspects: why is the world
quantum and not classical, and why is it quantum rather than superquantum,
i.e., why the Tsirelson bound for quantum correlations? I discuss a remarkable
answer to this question proposed by Pawlowski et al (2009), who provide an
information-theoretic derivation of the Tsirelson bound from a principle they
call 'information causality.'Comment: 17 page
Loading of a surface-electrode ion trap from a remote, precooled source
We demonstrate loading of ions into a surface-electrode trap (SET) from a
remote, laser-cooled source of neutral atoms. We first cool and load
neutral Sr atoms into a magneto-optical trap from an oven that
has no line of sight with the SET. The cold atoms are then pushed with a
resonant laser into the trap region where they are subsequently photoionized
and trapped in an SET operated at a cryogenic temperature of 4.6 K. We present
studies of the loading process and show that our technique achieves ion loading
into a shallow (15 meV depth) trap at rates as high as 125 ions/s while
drastically reducing the amount of metal deposition on the trap surface as
compared with direct loading from a hot vapor. Furthermore, we note that due to
multiple stages of isotopic filtering in our loading process, this technique
has the potential for enhanced isotopic selectivity over other loading methods.
Rapid loading from a clean, isotopically pure, and precooled source may enable
scalable quantum information processing with trapped ions in large, low-depth
surface trap arrays that are not amenable to loading from a hot atomic beam
Composite absorbing potentials
The multiple scattering interferences due to the addition of several
contiguous potential units are used to construct composite absorbing potentials
that absorb at an arbitrary set of incident momenta or for a broad momentum
interval.Comment: 9 pages, Revtex, 2 postscript figures. Accepted in Phys. Rev. Let
Ambiguities of arrival-time distributions in quantum theory
We consider the definition that might be given to the time at which a
particle arrives at a given place, both in standard quantum theory and also in
Bohmian mechanics. We discuss an ambiguity that arises in the standard theory
in three, but not in one, spatial dimension.Comment: LaTex, 12 pages, no figure
Measurement of Time-of-Arrival in Quantum Mechanics
It is argued that the time-of-arrival cannot be precisely defined and
measured in quantum mechanics. By constructing explicit toy models of a
measurement, we show that for a free particle it cannot be measured more
accurately then , where is the initial kinetic
energy of the particle. With a better accuracy, particles reflect off the
measuring device, and the resulting probability distribution becomes distorted.
It is shown that a time-of-arrival operator cannot exist, and that approximate
time-of-arrival operators do not correspond to the measurements considered
here.Comment: References added. To appear in Phys. Rev.
A measurement-based approach to quantum arrival times
For a quantum-mechanically spread-out particle we investigate a method for
determining its arrival time at a specific location. The procedure is based on
the emission of a first photon from a two-level system moving into a
laser-illuminated region. The resulting temporal distribution is explicitly
calculated for the one-dimensional case and compared with axiomatically
proposed expressions. As a main result we show that by means of a deconvolution
one obtains the well known quantum mechanical probability flux of the particle
at the location as a limiting distribution.Comment: 11 pages, 4 figures, submitted to Phys. Rev.
Quantum Time and Spatial Localization: An Analysis of the Hegerfeldt Paradox
Two related problems in relativistic quantum mechanics, the apparent
superluminal propagation of initially localized particles and dependence of
spatial localization on the motion of the observer, are analyzed in the context
of Dirac's theory of constraints. A parametrization invariant formulation is
obtained by introducing time and energy operators for the relativistic particle
and then treating the Klein-Gordon equation as a constraint. The standard,
physical Hilbert space is recovered, via integration over proper time, from an
augmented Hilbert space wherein time and energy are dynamical variables. It is
shown that the Newton-Wigner position operator, being in this description a
constant of motion, acts on states in the augmented space. States with strictly
positive energy are non-local in time; consequently, position measurements
receive contributions from states representing the particle's position at many
times. Apparent superluminal propagation is explained by noting that, as the
particle is potentially in the past (or future) of the assumed initial place
and time of localization, it has time to propagate to distant regions without
exceeding the speed of light. An inequality is proven showing the Hegerfeldt
paradox to be completely accounted for by the hypotheses of subluminal
propagation from a set of initial space-time points determined by the quantum
time distribution arising from the positivity of the system's energy. Spatial
localization can nevertheless occur through quantum interference between states
representing the particle at different times. The non-locality of the same
system to a moving observer is due to Lorentz rotation of spatial axes out of
the interference minimum.Comment: This paper is identical to the version appearing in J. Math. Phys.
41; 6093 (Sept. 2000). The published version will be found at
http://ojps.aip.org/jmp/. The paper (40 page PDF file) has been completely
revised since the last posting to this archiv
- …