130 research outputs found

    Unveiling the role of carbon defects in the exceptional narrowing of m-ZrO2 bandgap for enhanced photoelectrochemical water splitting performance

    Full text link
    The development of efficient photoelectrodes via defect engineering of wide-band gap metal oxides has been the prime focus for many years. Specifically, the effect of carbon defects in wide-band gap metal oxides on their performance in photoelectrochemical (PEC) applications raised numerous controversies and still elusive. Herein, the effect of various carbon defects in m-ZrO2 was investigated using the density functional theory to probe the thermodynamic, electronic, and optical properties of the defective structures against pristine m-ZrO2. The defect formation energies revealed that elevating the temperature promotes and facilitates the formation of carbon defects. Moreover, the binding energies confirmed the stability of all studied complex carbon defects. Furthermore, the band edge positions against the redox potentials of water species revealed that all the studied defective structures can serve as photoanodes for water splitting. Additionally, CO3c (carbon atom substituted O3c site) was the only defective structure that exhibited slight straddling of the redox potentials of water. Importantly, all investigated defective structures enhanced light absorption with different optical activities. Finally, CO3cVO3c (carbon atom substituted O3c associated with O3c vacancy) defective m-ZrO2 enjoyed low direct band gap (1.9 eV), low defect formation energy, low exciton binding energy, high mobility of charge carriers, fast charge transfer, and low recombination rate. Concurrently, its optical properties were exceptional in terms of high absorption, low reflectivity and improved static dielectric constant. Hence, the study recommends CO3cVO3c defective m-ZrO2 as the leading candidate to serve as a photoanode for PEC applications

    The DFT+U: Approaches, Accuracy, and Applications

    Get PDF
    This chapter introduces the Hubbard model and its applicability as a corrective tool for accurate modeling of the electronic properties of various classes of systems. The attainment of a correct description of electronic structure is critical for predicting further electronic-related properties, including intermolecular interactions and formation energies. The chapter begins with an introduction to the formulation of density functional theory (DFT) functionals, while addressing the origin of bandgap problem with correlated materials. Then, the corrective approaches proposed to solve the DFT bandgap problem are reviewed, while comparing them in terms of accuracy and computational cost. The Hubbard model will then offer a simple approach to correctly describe the behavior of highly correlated materials, known as the Mott insulators. Based on Hubbard model, DFT+U scheme is built, which is computationally convenient for accurate calculations of electronic structures. Later in this chapter, the computational and semiempirical methods of optimizing the value of the Coulomb interaction potential (U) are discussed, while evaluating the conditions under which it can be most predictive. The chapter focuses on highlighting the use of U to correct the description of the physical properties, by reviewing the results of case studies presented in literature for various classes of materials

    Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles

    Get PDF
    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe(3)O(4) nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe(3)O(4) nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions. PACS: 7550Mw; 7575Cd; 8185Q

    Water Security in Egypt Issues and Perspectives/ الأمن المائي في مصر: المشاكل والآفاق

    Get PDF
    Under the looming threat of water scarcity, the government of Egypt (GoE) must impose effective policies that promote water conservation to ensure water security for the future of its population. This policy paper seeks to define, survey, evaluate, and recommend prospective policies that can address the problem of current water scarcity and achieve water security. This paper focuses on two research sub-questions: 1) How can the government implement policies that can help Egypt\u27s water conservation? 2) How can Egypt create alternative water sources

    Systematic Evaluation for the Impact of the Geological Conditions on the Adsorption Affinities of Calcite as an Adsorbent of Zn2+ Ions from Aqueous Solutions: Experimental and Theoretical Studies

    Get PDF
    Three samples of calcite (calcite crystal (CA), calcite of limestone (L.CA), and metamorphosed calcite (marble) (M.CA)) were assessed as adsorbents of Zn (II) to consider the impact of the different geological conditions. The three samples exhibit remarkable changes in their Zn (II) retention capacities (Qsat = 384.6 mg/g (CA), 274.5 mg/g (L.CA), and 512.6 mg/g (M.CA)). The retention systems of the three calcite samples were described on the basis of the suggested statistical physics-based equilibrium studies as well as the traditional kinetic and isotherm models. However, the M.CA samples exhibited the best retention capacity, the steric properties reflecting a higher active site density of CA (Nm (Zn) = 113.46 mg/g) than both M.CA (Nm (Zn) = 82.8 mg/g) and L.CA (Nm (Zn) = 52.4 mg/g) at 323 K. This was assigned to the controlling effect of the sequestered numbers of Zn (II) per site on the surfaces of the calcite phase (n(Zn) = 3.39 (CA), 5.24 (L.CA), and 6.19 (M.CA)) in addition to the higher surface area and ion exchange of the metamorphosed and deformed M.CA. The previous n(Zn) values suggested the retention of Zn (II) by a multi-ionic mechanism in a vertical orientation. The Gaussian energies (8 to 16 KJ/mol) and retention energies (˂40 KJ/mol) of Zn (II) by CA and L.CA suggested complex physical and weak chemical mechanisms involving ion exchange, hydrogen bonding, dipole bonding forces, electrostatic attractions, and van der Waals forces. The thermodynamic properties were illustrated on the basis of the internal energy, free enthalpy, and entropy functions, which validate the endothermic and spontaneous nature of the Zn (II) retention system by the three calcite samples

    Feasibility study for a community based intervention for adults with severe chronic fatigue syndrome/ME

    Get PDF
    Background: Chronic Fatigue Syndrome/ME (CFS/ME) is characterised by debilitating fatigue with many bedbound patients. The study aims were: to determine whether a new intervention could be successfully delivered; to collect quantitative outcome data to guide the design of future studies; to explore qualitatively the experience of patients, carers and clinicians. Methods: Mixed-methods feasibility study with qualitative and quantitative evaluation. Participants: 12 UK patients who were housebound with severe CFS/ME. Intervention: Based on recovery skills identified through a 2.5 year Patient and Public Involvement development process involving individuals with first-hand experience of recovery from CFS/ME, as well as current patients and clinicians. The resulting one year intervention, delivered by a multi-disciplinary team, included domiciliary therapy visits and optional peer support group. Quantitative outcome measures: Patient-reported and therapist-reported outcome measures (including fatigue, physical function, anxiety, depression and other variables) and electronic activity measurement. Results: The study recruited and engaged twelve participants with no serious adverse events or dropouts. At end of intervention, 5/12 participants had improved in fatigue, physical function. Group mean scores improved overall for fatigue (Chalder fatigue scale), physical function (activity and physical function scale) and anxiety. Qualitative interviews suggested that the intervention was acceptable to patients, whilst also highlighting suggestions for improvement. Participants will be followed up for a further year to find out if improvements are sustained. Conclusion: This is the largest study ever conducted in severe CFS/ME and shows significant recovery suggesting further studies are indicated. Treatment is uniquely based on a patient inspired intervention

    Heightened NLRP3 inflammasome activation is associated with aging and CMML diseases severity

    Get PDF
    Aging causes chronic low-grade inflammation known as inflamm-aging. It is a risk factor for chronic myelomonocytic leukemia (CMML), a hematological malignancy that is most prevalent in older people. Recent studies suggest a critical role for the NLRP3 inflammasome in inflamm-aging. However, the mechanisms involved in NLRP3 activation in aging and its involvement in CMML progression are not fully understood. Here, we report that aging increases interleukin-1β production upon NLRP3 activation in human CD14+ monocytes. Interestingly, we found that Toll-like receptor (TLR) 1/2 agonist Pam3Cysk4 directly activates NLRP3 inflammasome without the requirement of second activation signal in monocytes from older but not from younger healthy donors. Further, we observed a dichotomous response to NLRP3 inflammasome activation in monocytes from CMML patients. Intriguingly, CMML patients with heightened NLRP3 activation showed increased treatment dependency and disease severity. Collectively, our results suggest that aging causes increased sensitivity to NLRP3 inflammasome activation at cellular level, which may explain increased inflammation and immune dysregulation in older individuals. Furthermore, NLRP3 inflammasome activation was dysregulated in CMML and positively correlated with disease severity

    History of Galaxy Interactions and their Impact on Star Formation over the Last 7 Gyr from GEMS

    Get PDF
    We perform a comprehensive estimate of the frequency of galaxy mergers and their impact on star formation over z~0.24--0.80 (lookback time T_b~3--7 Gyr) using 3698 (M*>=1e9 Msun) galaxies with GEMS HST, COMBO-17, and Spitzer data. Our results are: (1) Among 790 high mass (M*>=2.5e10 Msun) galaxies, the visually-based merger fraction over z~0.24--0.80, ranges from 9%+-5% to 8%+-2%. Lower limits on the major and minor merger fractions over this interval range from 1.1% to 3.5%, and 3.6% to 7.5%, respectively. This is the first approximate empirical estimate of the frequency of minor mergers at z<1. For a visibility timescale of ~0.5 Gyr, it follows that over T_b~3--7 Gyr, ~68% of high mass systems have undergone a merger of mass ratio >1/10, with ~16%, 45%, and 7% of these corresponding respectively to major, minor, and ambiguous `major or minor' mergers. The mean merger rate is a few x 1e-4 Gyr-1 Mpc-3. (2) We compare the empirical merger fraction and rate for high mass galaxies to a suite of Lambda CDM-based models: halo occupation distribution models, semi-analytic models, and hydrodynamic SPH simulations. We find qualitative agreement between observations and models such that the (major+minor) merger fraction or rate from different models bracket the observations, and show a factor of five dispersion. Near-future improvements can now start to rule out certain merger scenarios. (3) Among ~3698 M*>=1e9 Msun galaxies, we find that the mean SFR of visibly merging systems is only modestly enhanced compared to non-interacting galaxies over z~0.24--0.80. Visibly merging systems only account for less than 30% of the cosmic SFR density over T_b~3--7 Gyr. This suggests that the behavior of the cosmic SFR density over the last 7 Gyr is predominantly shaped by non-interacting galaxies.Comment: Accepted for Publication in the Astrophysical Journal. 17 pages of text, 21 figures, 3 tables. Uses emulateapj5.st

    Increases in Regional Brain Volume Across Two Native South American Male Populations

    Get PDF
    Industrialized environments, despite benefits such as higher levels of formal education and lower rates of infections, can also have pernicious impacts upon brain atrophy. Partly for this reason, comparing age-related brain volume trajectories between industrialized and non-industrialized populations can help to suggest lifestyle correlates of brain health. The Tsimane, indigenous to the Bolivian Amazon, derive their subsistence from foraging and horticulture and are physically active. The Moseten, a mixed-ethnicity farming population, are physically active but less than the Tsimane. Within both populations (N = 1024; age range = 46–83), we calculated regional brain volumes from computed tomography and compared their cross-sectional trends with age to those of UK Biobank (UKBB) participants (N = 19,973; same age range). Surprisingly among Tsimane and Moseten (T/M) males, some parietal and occipital structures mediating visuospatial abilities exhibit small but significant increases in regional volume with age. UKBB males exhibit a steeper negative trend of regional volume with age in frontal and temporal structures compared to T/M males. However, T/M females exhibit significantly steeper rates of brain volume decrease with age compared to UKBB females, particularly for some cerebro-cortical structures (e.g., left subparietal cortex). Across the three populations, observed trends exhibit no interhemispheric asymmetry. In conclusion, the age-related rate of regional brain volume change may differ by lifestyle and sex. The lack of brain volume reduction with age is not known to exist in other human population, highlighting the putative role of lifestyle in constraining regional brain atrophy and promoting elements of non-industrialized lifestyle like higher physical activity
    corecore