72 research outputs found
Recommended from our members
Differentiating freshwater contributions and their variability to the surface and halocline layers of the Arctic and subarctic seas
Dramatic and ongoing changes pervading the Arctic and subarctic seas over
recent decades have motivated this effort to track and better understand hydrographic
variability using chemical tracers. Particular emphasis has been paid to differentiating
freshwater contributions to upper layers: namely Pacific water, meteoric water, and
sea-ice melt/formation.
Data collected in spring from stations occupied via aircraft in the central
Arctic indicate that Pacific origin water partly returned to the mixed and upper
halocline layers between 2003 and 2005. The Pacific influence became absent once
again from the Makarov Basin between 2006 and 2008. Pacific water appears to be
variably entrained into the Transpolar Drift Stream on timescales not clearly linked to
Arctic Oscillation indexed atmospheric forcing.
An in-situ ultraviolet spectrophotometer was used to profile nitrate
concentrations for the first time in the central Arctic Ocean during 2007-2008 field
seasons. Sensor-based nitrate and dissolved oxygen were combined to calculate the
NO parameter (NO = 9xNO3 + O2), a quasi-conservative tracer that has been used to
define lower halocline water in the literature. The NO minima in the Makarov Basin
occurred above lower halocline water and were concomitant with larger Eurasian
river runoff fractions. These features suggest respiratory imprinting of East Siberian
Sea shelf waters prior to their offshore advection. Vertical, NO profiles in the
southern Canada Basin implicate multiple influences on the lower halocline,
including Eurasian Basin convective processes, diapycnal mixing near the shelf break
and ventilation via brine production associated with recurrent coastal polynyas.
Salinity-[delta]18O relationships in the Canadian Archipelago and Baffin Bay in late
summer in 1997 and 2003 show that a net sea-ice formation signal is inherited from
the Arctic Ocean. Local, seasonal sea-ice melt contributions can be estimated by
taking this into account. Distributions of freshwater sources are similar to those
previously reported using other methods. However, differences in their relative
proportions are apparent and suggest variations over time.
Geochemical tracers augment understanding of variability in the formation
and circulation of both surface and halocline waters of the Arctic Ocean via
quantitative separation of its freshwater components
Sea ice melt and meteoric water distributions in Nares Strait, Baffin Bay, and the Canadian Arctic Archipelago
Sea ice melt (SIM), meteoric water (river runoff net precipitation), and Pacific seawater contributions to the upper waters of the Canadian Arctic Archipelago (CAA), Nares Strait, and Baffin Bay during late summer 1997 and 2003 are estimated from salinity, δ18O, and nutrient data. Salinity-δ18O relationships within the study area suggest that the CAA inherits a net sea-ice formation (brine) signal from the Arctic Ocean. Inherited brine complicates the estimation of local contributions from sea ice melt and glacial runoff, especially where a significant component of the surface water derives from Arctic outflow. Our data are characterized by two linear relationships between salinity and δ18O, reflecting: (1) the mixing of deeper Atlantic seawater with brine-enriched halocline water of shelf origin and (2) mixing of halocline water with shallower waters freshened by meteoric water and local SIM. Inventories of Pacific water, meteoric water, net SIM, and local SIM were computed over the upper 150 m of the water column. Positive local SIM fractions were ubiquitous during late summer, with the largest inventories (\u3e1 m) found on the eastern sides of Baffin Bay, Kennedy Channel, and Davis Strait. In the CAA and Baffin Bay, freshwater inventories were dominated by contributions from meteoric and Pacific water, with little input from local SIM. In Smith Sound, where comparable data were collected in 1997 and 2003, meteoric water inventories of 8â10 m were similar for both years, whereas the Pacific water inventory was substantially lower in 2003 (\u3c80 m) than in 1997 (\u3e100 m), implying that the export of meteoric water from the Arctic Ocean is decoupled from Pacific water outflow
Increasing nutrient fluxes and mixing regime changes in the eastern Arctic Ocean
Primary productivity in the Arctic Ocean is experiencing dramatic changes linked to the receding sea ice cover. The vertical transport of nutrients from deeper water layers is the limiting factor for primary production. Here, we compare coincident profiles of turbulence and nutrients from the Siberian Seas in 2007, 2008, and 2018. In all years, the water column structure in the upstream region of the Arctic Boundary Current promotes upward nutrient transport, in contrast to the regions further downstream, and there are first indications for an eastward progression of these conditions. In summer 2018, strongly enhanced vertical nitrate flux and primary production above the continental slope were observed, likely related to a remote storm. The estimated contribution of these elevated fluxes above the slope to the Pan-Arctic vertical nitrate supply is comparable with the basin-wide transport, and is predicted to increase with declining sea ice cover in the future
Weakening of cold halocline layer exposes sea ice to oceanic heat in the eastern Arctic Ocean
A 15-yr duration record of mooring observations from the eastern (>70°E) Eurasian Basin (EB) of the Arctic Ocean is used to show and quantify the recently increased oceanic heat flux from intermediate-depth (~150â900 m) warm Atlantic Water (AW) to the surface mixed layer and sea ice. The upward release of AW heat is regulated by the stability of the overlying halocline, which we show has weakened substantially in recent years. Shoaling of the AW has also contributed, with observations in winter 2017â18 showing AW at only 80 m depth, just below the wintertime surface mixed layer, the shallowest in our mooring records. The weakening of the halocline for several months at this time implies that AW heat was linked to winter convection associated with brine rejection during sea ice formation. This resulted in a substantial increase of upward oceanic heat flux during the winter season, from an average of 3â4 W mâ2 in 2007â08 to >10 W mâ2 in 2016â18. This seasonal AW heat loss in the eastern EB is equivalent to a more than a twofold reduction of winter ice growth. These changes imply a positive feedback as reduced sea ice cover permits increased mixing, augmenting the summer-dominated ice-albedo feedback
Borealization of the Arctic Ocean in Response to Anomalous Advection From Sub-Arctic Seas
An important yet still not well documented aspect of recent changes in the Arctic Ocean is associated with the advection of anomalous sub-Arctic Atlantic- and Pacific-origin waters and biota into the polar basins, a process which we refer to as borealization. Using a 37-year archive of observations (1981-2017) we demonstrate dramatically contrasting regional responses to atlantification (that part of borealization related to progression of anomalies from the Atlantic sector of sub-Arctic seas into the Arctic Ocean) and pacification (the counterpart of atlantification associated with influx of anomalous Pacific waters). Particularly, we show strong salinification of the upper Eurasian Basin since 2000, with attendant reductions in stratification, and potentially altered nutrient fluxes and primary production. These changes are closely related to upstream conditions. In contrast, pacification is strongly manifested in the Amerasian Basin by the anomalous influx of Pacific waters, creating conditions favorable for increased heat and freshwater content in the Beaufort Gyre halocline and expansion of Pacific species into the Arctic interior. Here, changes in the upper (overlying) layers are driven by local Arctic atmospheric processes resulting in stronger wind/ice/ocean coupling, increased convergence within the Beaufort Gyre, a thickening of the fresh surface layer, and a deepening of the nutricline and deep chlorophyll maximum. Thus, a divergent (Eurasian Basin) gyre responds altogether differently than does a convergent (Amerasian Basin) gyre to climate forcing. Available geochemical data indicate a general decrease in nutrient concentrations Arctic-wide, except in the northern portions of the Makarov and Amundsen Basins and northern Chukchi Sea and Canada Basin. Thus, changes in the circulation pathways of specific water masses, as well as the utilization of nutrients in upstream regions, may control the availability of nutrients in the Arctic Ocean. Model-based evaluation of the trajectory of the Arctic climate system into the future suggests that Arctic borealization will continue under scenarios of global warming. Results from this synthesis further our understanding of the Arctic Ocean\u27s complex and sometimes non-intuitive Arctic response to climate forcing by identifying new feedbacks in the atmosphere-ice-ocean system in which borealization plays a key role
On the seasonal cycles observed at the continental slope of the Eastern Eurasian Basin of the Arctic Ocean
The Eurasian Basin (EB) of the Arctic Ocean is subject to substantial seasonality. We here use data collected between 2013 and 2015 from six moorings across the continental slope in the eastern EB and identify three domains, each with its own unique seasonal cycle: 1) The upper ocean (<100 m), with seasonal temperature and salinity differences of Îθ = 0.16°C and ÎS = 0.17, is chiefly driven by the seasonal sea ice cycle. 2) The upper-slope domain is characterized by the influence of a hydrographic front that spans the water column around the ~750-m isobath. The domain features a strong temperature and moderate salinity seasonality (Îθ = 1.4°C; ÎS = 0.06), which is traceable down to ~600-m depth. Probable cause of this signal is a combination of along-slope advection of signals by the Arctic Circumpolar Boundary Current, local wind-driven upwelling, and a cross-slope shift of the front. 3) The lower-slope domain, located offshore of the front, with seasonality in temperature and salinity mainly confined to the halocline (Îθ = 0.83°C; ÎS = 0.11; ~100â200 m). This seasonal cycle can be explained by a vertical isopycnal displacement (ÎZ ~ 36 m), arguably as a baroclinic response to sea level changes. Available long-term oceanographic records indicate a recent amplification of the seasonal cycle within the halocline layer, possibly associated with the erosion of the halocline. This reduces the haloclineâs ability to isolate the ocean surface layer and sea ice from the underlying Atlantic Water heat with direct implications for the evolution of Arctic sea ice cover and climate
Recommended from our members
Tracer-derived freshwater composition of the Siberian continental shelf and slope following the extreme Arctic summer of 2007
We investigate the freshwater composition of the shelf
and slope of the Arctic Ocean north of the New Siberian
Islands using geochemical tracer data (δšâ¸O, Ba, and POâ*)
collected following the extreme summer of 2007. We find
that the anomalous wind patterns that partly explained the sea
ice minimum at this time also led to significant quantities of
Pacific-derived surface water in the westernmost part of the
Makarov Basin. We also find larger quantities of meteoric
water near Lomonosov Ridge than were found in 1995.
Dissolved barium is depleted in the upper layers in one region
of our study area, probably as a result of biological activity in
open waters. Increasingly ice-free conditions compromise
the quantitative use of barium as a tracer of river water in the
Arctic Ocean.Keywords: Arctic, dissolved barium, stable isotope
Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats.
Š The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson, J., Johnson, G. C., Martini, K., Murphy, D. J., Scanderbeg, M., Bhaskar, T. V. S. U., Buck, J. J. H., Merceur, F., Carval, T., Maze, G., Cabanes, C., Andre, X., Poffa, N., Yashayaev, I., Barker, P. M., Guinehut, S., Belbeoch, M., Ignaszewski, M., Baringer, M. O., Schmid, C., Lyman, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N., Alkire, M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh, C., Robbins, P., West-Mack, D., Bahr, F., Yoshida, S., Sutton, P. J. H., Cancouet, R., Coatanoan, C., Dobbler, D., Juan, A. G., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourles, B., Claustre, H., D'Ortenzio, F., Le Reste, S., Le Traon, P., Rannou, J., Saout-Grit, C., Speich, S., Thierry, V., Verbrugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano, G., Poulain, P., Velez-Belchi, P., Suga, T., Ando, K., Iwasaska, N., Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K., Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J. L., Oke, P. R., van Wijk, E. M., Carse, F., Donnelly, M., Gould, W. J., Gowers, K., King, B. A., Loch, S. G., Mowat, M., Turton, J., Rama Rao, E. P., Ravichandran, M., Freeland, H. J., Gaboury, I., Gilbert, D., Greenan, B. J. W., Ouellet, M., Ross, T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K., Jo, H., Kim, S., & Park, H. Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Frontiers in Marine Science, 7, (2020): 700, doi:10.3389/fmars.2020.00700.In the past two decades, the Argo Program has collected, processed, and distributed over two million vertical profiles of temperature and salinity from the upper two kilometers of the global ocean. A similar number of subsurface velocity observations near 1,000 dbar have also been collected. This paper recounts the history of the global Argo Program, from its aspiration arising out of the World Ocean Circulation Experiment, to the development and implementation of its instrumentation and telecommunication systems, and the various technical problems encountered. We describe the Argo data system and its quality control procedures, and the gradual changes in the vertical resolution and spatial coverage of Argo data from 1999 to 2019. The accuracies of the float data have been assessed by comparison with high-quality shipboard measurements, and are concluded to be 0.002°C for temperature, 2.4 dbar for pressure, and 0.01 PSS-78 for salinity, after delayed-mode adjustments. Finally, the challenges faced by the vision of an expanding Argo Program beyond 2020 are discussed.AW, SR, and other scientists at the University of Washington (UW) were supported by the US Argo Program through the NOAA Grant NA15OAR4320063 to the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) at the UW. SW and other scientists at the Woods Hole Oceanographic Institution (WHOI) were supported by the US Argo Program through the NOAA Grant NA19OAR4320074 (CINAR/WHOI Argo). The Scripps Institution of Oceanography's role in Argo was supported by the US Argo Program through the NOAA Grant NA15OAR4320071 (CIMEC). Euro-Argo scientists were supported by the Monitoring the Oceans and Climate Change with Argo (MOCCA) project, under the Grant Agreement EASME/EMFF/2015/1.2.1.1/SI2.709624 for the European Commission
Study of ordered hadron chains with the ATLAS detector
La lista completa de autores que integran el documento puede consultarse en el archivo
- âŚ