5 research outputs found

    Removal of Patent Blue Dye Using <i>Ananas comosus</i>-Derived Biochar: Equilibrium, Kinetics, and Phytotoxicity Studies

    No full text
    Patent Blue (PB) dye removal from an aqueous medium was investigated using pineapple fruit peel biochar (PFPB). The presence of functional groups and surface characteristics of PFPB was studied using Fourier transform infrared spectra (FTIR) and scanning electron microscopy (SEM). A study was conducted to assess the pH effect, contact time, concentration of dye, biochar dose, speed of agitation, and temperature on removal of PB (Patent Blue) dye from an aqueous medium by PFPB. The highest 95% elimination of PB dye was reported at pH 2 by PFPB with 600 mg/L concentration of PB dye. Equilibrium studies divulged the favorable adsorption that followed the Langmuir isotherm with a monolayer uptake potential of 10.29 mg/g. Findings of kinetics disclosed that adsorption results were properly explained by the pseudo second-order model. The adsorption phenomenon was exothermic and spontaneous, as observed by thermodynamic variables. PFPB reflected a 37% uptake capacity of PB dye for up to five consecutive cycles in the adsorption and desorption study. A phytotoxicity study exhibited that PFPB-treated PB dye solution enhanced the growth of seedlings and biochemical constituents of lentils. The findings of the present study indicate the immense potential of pineapple fruit peel biochar for anionic dye removal from wastewater systems. Thus, pineapple fruit peel biochar can be utilized as a promising green sorbent for the elimination of Patent Blue dye in industrial effluents, as it is widely available and converts wastewater into reusable assets

    Palladium Hydroxide (Pearlman’s Catalyst) Doped MXene (Ti<sub>3</sub>C<sub>2</sub>Tx) Composite Modified Electrode for Selective Detection of Nicotine in Human Sweat

    No full text
    High concentrations of nicotine (40 to 60 mg) are more dangerous for adults who weigh about 70 kg. Herein, we developed an electrochemical transducer using an MXene (Ti3C2Tx)/palladium hydroxide-supported carbon (Pearlman’s catalyst) composite (MXene/Pd(OH)2/C) for the identification of nicotine levels in human sweat. Firstly, the MXene was doped with Pd(OH)2/C (PHC) by mechanical grinding followed by an ultrasonication process to obtain the MXene/PHC composite. Secondly, XRD, Raman, FE-SEM, EDS and E-mapping analysis were utilized to confirm the successful formation of MXene/PHC composite. Using MXene/PHC composite dispersion, an MXene/PHC composite-modified glassy carbon electrode (MXene/PHC/GCE) was prepared, which showed high sensitivity as well as selectivity towards nicotine (300 µM NIC) oxidation in 0.1 M phosphate buffer (pH = 7.4) by cyclic voltammetry (CV) and amperometry. The MXene/PHC/GCE had reduced the over potential of nicotine oxidation (about 200 mV) and also enhanced the oxidation peak current (8.9 µA) compared to bare/GCE (2.1 µA) and MXene/GCE (5.5 µA). Moreover, the optimized experimental condition was used for the quantification of NIC from 0.25 µM to 37.5 µM. The limit of detection (LOD) and sensitivity were 27 nM and 0.286 µA µM−1 cm2, respectively. The MXene/PHC/GCE was also tested in the presence of Na+, Mg2+, Ca2+, hydrogen peroxide, acetic acid, ascorbic acid, dopamine and glucose. These molecules were not interfered during NIC analysis, which indicated the good selectivity of the MXene/PHC/GCE sensor. In addition, electrochemical determination of NIC was successfully carried out in the human sweat samples collected from a tobacco smoker. The recovery percentage of NIC in the sweat sample was 97%. Finally, we concluded that the MXene/PHC composite-based sensor can be prepared for the accurate determination of NIC with high sensitivity, selectivity and stability in human sweat samples

    Employing a Carbon-Based Nanocomposite as a Diffusive Solid-Phase Extraction Adsorbent for Methamphetamine for Therapeutic Purposes

    No full text
    Due to the obvious minimal doses of drugs in biological matrices as well as the societal difficulties caused by methamphetamine usage, methamphetamine identification is critical in clinical and forensic laboratories. Because of their simple and inexpensive production procedure, as well as their excellent selectivity and sensitivity, polymeric carbon-based nanocomposites are strong contenders for the diffusive solid-phase extraction approach. The diffusive solid-phase extraction absorbent nanographene oxide polypyrrole composite was produced and used to recover methamphetamine from a complicated urine substrate. The generated NGPPC was fully characterized, and the significant extracting parameters have been explored using the one-parameter-at-a-time strategy. NGOPC is being used to extract methamphetamine using a urine medium with high efficiency. The NGPPC synthesizing procedure was easy, and the extraction method will demonstrate good repeatability. Moreover, the practical and efficient synthesis process stimulates the use of carbon-based compounds in various extraction procedures. As for detecting and quantifying equipment, HPLC monitors are being used. 300 mL methanol, 7 min extracting and desorption duration, 5000 mixing frequency, urinary pH value of 20, 40 mg adsorption, and 5 mL amount of urine were the optimal extraction variables. Following tracing the calibration graph, the method’s linear ranges were determined to be 40-600 ng/ml. The detection limits (LOD) and quantitation limits (LOQ), correspondingly, were 10 and 35.80 ng/mL. The proposed methodology seemed to have a detection range of 9 ng/mL. The suggested approach’s applicability in numerous characterization and medical facilities was proven by the examination of addicted subjects using the proposed technique. For successful extraction of methamphetamine using biological urine samples, the carbon-based adsorbent was being used as diffusive solid-phase extraction adsorption
    corecore