158 research outputs found

    Preparation of an Exponentially Rising Optical Pulse for Efficient Excitation of Single Atoms in Free Space

    Full text link
    We report on a simple method to prepare optical pulses with exponentially rising envelope on the time scale of a few ns. The scheme is based on the exponential transfer function of a fast transistor, which generates an exponentially rising envelope that is transferred first on a radio frequency carrier, and then on a coherent cw laser beam with an electro-optical phase modulator (EOM). The temporally shaped sideband is then extracted with an optical resonator and can be used to efficiently excite a single Rb-87 atom.Comment: 3 pages, 4 figures, small technical not

    Doppler-free approach to optical pumping dynamics in the 6S1/25D5/26S_{1/2}- 5D_{5/2} electric quadrupole transition of Cesium vapor

    Full text link
    The 6S1/25D5/26S_{1/2}-5D_{5/2} electric quadrupole transition is investigated in Cesium vapor at room temperature via nonlinear Doppler-free 6P-6S-5D three-level spectroscopy. Frequency-resolved studies of individual E2 hyperfine lines allow one to analyze optical pumping dynamics, polarization selection rules and line intensities. It opens the way to studies of transfer of light orbital angular momentum to atoms, and the influence of metamaterials on E2 line spectra.Comment: 4 pages, 5 figures, minor updates from previous versio

    Excitation of a single atom with exponentially rising light pulses

    Full text link
    We investigate the interaction between a single atom and optical pulses in a coherent state with a controlled temporal envelope. In a comparison between a rising exponential and a square envelope, we show that the rising exponential envelope leads to a higher excitation probability for fixed low average photon numbers, in accordance to a time-reversed Weisskopf-Wigner model. We characterize the atomic transition dynamics for a wide range of the average photon numbers, and are able to saturate the optical transition of a single atom with ~50 photons in a pulse by a strong focusing technique. For photon numbers of ~1000 in a 15ns long pulse, we clearly observe Rabi oscillations.Comment: 5 pages, 6 figure

    Tailoring optical metamaterials to tune the atom-surface Casimir-Polder interaction

    Full text link
    Metamaterials are fascinating tools that can structure not only surface plasmons and electromagnetic waves but also electromagnetic vacuum fluctuations. The possibility of shaping the quantum vacuum is a powerful concept that ultimately allows engineering the interaction between macroscopic surfaces and quantum emitters such as atoms, molecules or quantum dots. The long-range atom-surface interaction, known as Casimir-Polder interaction, is of fundamental importance in quantum electrodynamics but also attracts a significant interest for platforms that interface atoms with nanophotonic devices. Here we perform a spectroscopic selective reflection measurement of the Casimir-Polder interaction between a Cs(6P_{3/2}) atom and a nanostructured metallic planar metamaterial. We show that by engineering the near-field plasmonic resonances of the metamaterial, we can successfully tune the Casimir-Polder interaction, demonstrating both a strong enhancement and reduction with respect to its non-resonant value. We also show an enhancement of the atomic spontaneous emission rate due to its coupling with the evanescent modes of the nanostructure. Probing excited state atoms next to nontrivial tailored surfaces is a rigorous test of quantum electrodynamics. Engineering Casimir-Polder interactions represents a significant step towards atom trapping in the extreme near field, possibly without the use of external fields.Comment: 21 pages, 9 figure

    Coupling of atomic quadrupole transitions with resonant surface plasmons

    Full text link
    We report on the coupling of an electric quadrupole transition in atom with plasmonic excitation in a nanostructured metallic metamaterial. The quadrupole transition at 685 nm in the gas of Cesium atoms is optically pumped, while the induced ground state population depletion is probed with light tuned on the strong electric dipole transition at 852 nm. We use selective reflection to resolve the Doppler-free hyperfine structure of Cesium atoms. We observed a strong modification of the reflection spectra at the presence of metamaterial and discuss the role of the spatial variation of the surface plasmon polariton on the quadrupole coupling.Comment: 6 pages, 5 figure

    Interaction of a strongly focused light beam with single atoms

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A new code for optical code division multiple access systems

    Get PDF
    A new code structure based on Double-Weight (DW) code families is proposed for Spectral-Amplitude-Coding Optical Code Division Multiple Access (OCDMA) system. The constraint of a constant weight of 2 for the DW code can be relaxed using a mapping technique. By using this technique, codes that have a larger number of weight can be developed. Modified Double-Weight (MDW) Code is another variation of a DW code family that can has a variable weight greater than two. The MDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the MDW code compared to the existing codes such as Hadamard and Modified Frequency-Hopping (MFH) codes. This has been demonstrated from the theoretical analysis and simulation

    Design configuration of encoder and decoder modules for modified double weight (MDW) code spectral amplitude coding (SAC) optical code division multiple access (OCDMA) based on fiber Bragg gratings

    Get PDF
    In this work, we are proposing the serial and parallel configurations of encoder and decoder modules to encode and decode a new developed spectral amplitude coding (SAC) known as modified double weight (MDW) code for optical code division multiple access (OCDMA) system. This coding scheme is designed in a way to decrease the number of FBGs used in the encoder and decoder modules and to maintain the cross-correlation parameter to 1
    corecore