5 research outputs found

    Diabetes Mellitus and Mortality after Acute Coronary Syndrome as a First or Recurrent Cardiovascular Event

    Get PDF
    Diabetes Mellitus (DM) is associated with adverse cardiovascular prognosis. However, the risk associated with DM may vary between individuals according to their overall cardiovascular risk burden. Therefore, we aimed to determine whether DM is associated with poor outcome in patients presenting with Acute Coronary Syndrome (ACS) according to the index episode being a first or recurrent cardiovascular event.We conducted a retrospective analysis of a prospective cohort study involving 2499 consecutively admitted patients with confirmed ACS in 11 UK hospitals during 2003. Usual care was provided for all participants. Demographic factors, co-morbidity and treatment (during admission and at discharge) factors were recorded. The primary outcome was all cause mortality (median 2 year follow up), compared for cohorts with and without DM according to their prior cardiovascular disease (CVD) disease status. Adjusted analyses were performed with Cox proportional hazards regression analysis. Within the entire cohort, DM was associated with an unadjusted 45% increase in mortality. However, in patients free of a history of CVD, mortality of those with and without DM was similar (18.8% and 19.7% respectively; p = 0.74). In the group with CVD, mortality of patients with DM was significantly higher than those without DM (46.7% and 33.2% respectively; p<0.001). The age and sex adjusted interaction between DM and CVD in predicting mortality was highly significant (p = 0.002) and persisted after accounting for comorbidities and treatment factors (p = 0.006). Of patients free of CVD, DM was associated with smaller elevation of Troponin I (p<0.001). However in patients with pre-existing CVD Troponin I was similar (p = 0.992).DM is only associated with worse outcome after ACS in patients with a pre-existing history of CVD. Differences in the severity of myocyte necrosis may account for this. Further investigation is required, though our findings suggest that aggressive primary prevention of CVD in patients with DM may have beneficially modified their first presentation with (and mortality after) ACS

    Kinematic Plasticity during Flight in Fruit Bats: Individual Variability in Response to Loading

    Get PDF
    All bats experience daily and seasonal fluctuation in body mass. An increase in mass requires changes in flight kinematics to produce the extra lift necessary to compensate for increased weight. How bats modify their kinematics to increase lift, however, is not well understood. In this study, we investigated the effect of a 20% increase in mass on flight kinematics for Cynopterus brachyotis, the lesser dog-faced fruit bat. We reconstructed the 3D wing kinematics and how they changed with the additional mass. Bats showed a marked change in wing kinematics in response to loading, but changes varied among individuals. Each bat adjusted a different combination of kinematic parameters to increase lift, indicating that aerodynamic force generation can be modulated in multiple ways. Two main kinematic strategies were distinguished: bats either changed the motion of the wings by primarily increasing wingbeat frequency, or changed the configuration of the wings by increasing wing area and camber. The complex, individual-dependent response to increased loading in our bats points to an underappreciated aspect of locomotor control, in which the inherent complexity of the biomechanical system allows for kinematic plasticity. The kinematic plasticity and functional redundancy observed in bat flight can have evolutionary consequences, such as an increase potential for morphological and kinematic diversification due to weakened locomotor trade-offs

    Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.

    Get PDF
    Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation

    Genetic studies of body mass index yield new insights for obesity biology

    Get PDF
    Note: A full list of authors and affiliations appears at the end of the article. Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P 20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.</p
    corecore