2 research outputs found

    Asymmetric Effect of Oxygen Adsorption on Electron and Hole Mobilities in Bilayer Graphene: Long- and Short-Range Scattering Mechanisms

    No full text
    We probe electron and hole mobilities in bilayer graphene under exposure to molecular oxygen. We find that the adsorbed oxygen reduces electron mobilities and increases hole mobilities in a reversible and activated process. Our experimental results indicate that hole mobilities increase due to the screening of long-range scatterers by oxygen molecules trapped between the graphene and the substrate. First principle calculations show that oxygen molecules induce resonant states close to the charge neutrality point. Electron coupling with such resonant states reduces the electron mobilities, causing a strong asymmetry between electron and hole transport. Our work demonstrates the importance of short-range scattering due to adsorbed species in the electronic transport in bilayer graphene on SiO<sub>2</sub> substrates

    Infrared Fingerprints of Natural 2D Talc and Plasmon–Phonon Coupling in Graphene–Talc Heterostructures

    No full text
    Two-dimensional (2D) materials occupy a noteworthy place in nanophotonics providing for subwavelength light confinement and optical phenomena dissimilar to those of their bulk counterparts. In the mid-infrared, graphene-based heterostructures and van der Waals crystals of hexagonal boron nitride (hBN) overwhelmingly concentrate the attention by exhibiting real-space nano-optics features from plasmons, phonon–polaritons, and hybrid plasmon phonon–polaritons. Here we present a prime study on mid-infrared nanophotonics of talc, a natural atomically flat layered material, and graphene-talc (G-talc) heterostructures using broadband synchrotron infrared nanospectroscopy. Wavelength tuning of the talc vibrational resonances, assigned to in- and out-of-plane molecular vibrations, are achieved by changing the thickness of the crystals, which configures a tunable infrared signature for the 2D talc. In G-talc nanostructures, we unveil a coupling of the graphene plasmons polaritons with surface phonons polaritons of talc, originating hybrid surface plasmon–phonon polaritons modes. In analogy to G-hBN and G-SiO<sub>2</sub> heterostructures, the coupling in G-talc produces a large increase in the opto-vibrational activity for the out-of-plane mode as well as it induces a blue-shift for the in-plane mode. Moreover, the coupling can be modulated by an external gate voltage to the heterostructure when mounted in a transistor configuration. Therefore, our results introduce talc and G-talc heterostructures as appealing materials for nanophotonics, especially for applications involving long wavelengths and active electric tuning of opto-vibrational activity
    corecore