173 research outputs found

    The effect of quitting smoking on HDL-cholesterol - a review based on within-subject changes

    Get PDF
    A higher concentration of high density lipoprotein cholesterol (HDL-C) in ex-smokers than smokers has consistently been observed. Better evidence of quitting effects comes from within-subject changes. We extend an earlier meta-analysis to quantify the reduction, and investigate variation by time quit and other factors. We conducted Medline and Cochrane searches for studies measuring HDL-C in subjects while still smoking and later having quit. Using unweighted and inverse-variance weighted regression analysis, we related changes (in mmol/l) to intra-measurement period, and estimated time quit, and to study type, location and start year, age, sex, product smoked, validation of quitting, baseline HDL-C, baseline and change in weight/BMI, and any study constraints on diet or exercise. Forty-five studies were identified (17 Europe, 16 North America, 11 Asia, 1 Australia). Thirteen were observational, giving changes over at least 12 months, with most involving >1000 subjects. Others were smoking cessation trials, 12 randomized and 20 non-randomized. These were often small (18 of <100 subjects) and short (14 of <10 weeks, the longest a year). Thirty studies provided results for only one time interval. From 94 estimates of HDL-C change, the unweighted mean was 0.107 (95% CI 0.085-0.128). The weighted mean 0.060 (0.044 to 0.075) was lower, due to smaller estimates in longer term studies. Weighted means varied by time quit (0.083, 0.112, 0.111, 0.072, 0.058 and 0.040 for <3, 3 to <6, 6 to <13, 13 to <27, 27 to <52 and 52+ weeks, p=0.006). After adjustment for time quit, estimates varied by study constraint on diet/exercise (p=0.003), being higher in studies requiring subjects to maintain their pre-quitting habits, but no other clear differences were seen, with significant (p<0.05) increases following quitting being evident in all subgroups studied, except where data were very limited. For both continuing and never smokers, the data are (except for two large studies atypically showing significant HDL-C declines in both groups, and a smaller decline in quitters) consistent with no change, and contrast markedly with the data for quitters. We conclude that quitting smoking increases HDL-C, and that this increase occurs rapidly after quitting, with no clear pattern of change thereafter

    Stable carbon isotopes of dissolved inorganic carbon for a zonal transect across the subpolar North Atlantic Ocean in summer 2014

    Get PDF
    The stable carbon isotope composition of dissolved inorganic carbon (δ13CDIC) in seawater was measured in samples collected during June–July 2014 in the subpolar North Atlantic. Sample collection was carried out on the RRS James Clark Ross cruise JR302, part of the “Radiatively Active Gases from the North Atlantic Region and Climate Change” (RAGNARoCC) research programme. The observed δ13CDIC values for cruise JR302 fall in a range from −0.07 to +1.95 ‰, relative to the Vienna Pee Dee Belemnite standard. From duplicate samples collected during the cruise, the 1σ precision for the 341 results is 0.08 ‰, which is similar to our previous work and other studies of this kind. We also performed a cross-over analysis using nearby historical δ13CDIC data, which indicated that there were no significant systematic offsets between our measurements and previously published results. We also included seawater reference material (RM) produced by A. G. Dickson (Scripps Institution of Oceanography, USA) in every batch of analysis, enabling us to improve upon the calibration and quality-control procedures from a previous study. The δ13CDIC is consistent within each RM batch, although its value is not certified. We report δ13CDIC values of 1.15 ± 0.03 ‰ and 1.27 ± 0.05 ‰ for batches 141 and 144 respectively. Our JR302 δ13CDIC data can be used – along with measurements of other biogeochemical variables – to constrain the processes that control DIC in the interior ocean, in particular the oceanic uptake of anthropogenic carbon dioxide and the biological carbon pump. Our δ13CDIC results are available from the British Oceanographic Data Centre – doi:10.5285/22235f1a-b7f3-687f-e053-6c86abc0c8a6

    Toxic metal levels in children residing in a smelting craft village in Vietnam: a pilot biomonitoring study

    Get PDF
    Abstract Background In Vietnam, environmental pollution caused by small-scale domestic smelting of automobile batteries into lead ingot is a growing concern. The village of Nghia Lo is a smelting craft village located roughly 25 km southeast of Hanoi in the Red River Delta. Despite the concern of toxic metal exposure in the village, biomonitoring among susceptible populations, such as children, has not been previously conducted. The aim of this study was to determine the body burden of toxic metals in children residing in a smelting craft village. Methods Twenty children from Nghia Lo, Vietnam, ages 18 months to four years were selected for capillary whole blood and toenail biomonitoring. Whole blood lead levels (BLLs) were measured using a portable lead analyzer, and toenail levels of arsenic, cadmium, chromium, lead, manganese, and mercury were analyzed with inductively coupled plasma-mass spectrometry. Results The findings show that all of the 20 children had detectable BLLs, and every child had levels that exceeded the Centers for Disease Control and Prevention guideline level of 5 μg/dL. Eighty percent of tested subjects had BLLs higher than 10 μg/dL. Five children (25%) had BLLs greater than 45 μg/dL, the level of recommended medical intervention. In addition to blood lead, all of the children had detectable levels of arsenic, cadmium, chromium, lead, manganese, and mercury in toenail samples. Notably, average toenail lead, manganese, and mercury levels were 157 μg/g, 7.41 μg/g, and 2.63 μg/g respectively, well above levels previously reported in children. Significant Spearman’s rank correlations showed that there were relationships between blood and toenail lead levels (r = 0.65, p < 0.05), toenail levels of lead and cadmium (r = 0.66, p < 0.05), and toenail levels of manganese and chromium (r = 0.72, p < 0.001). Linear regression showed that reducing the distance to the nearest active smelter by half was associated with a 116% increase in BLL (p < 0.05). Conclusions The results suggest that children in battery recycling and smelting craft villages in Vietnam are co-exposed to toxic metals. There is an urgent need for mitigation to control metal exposure related to domestic smelting

    Systems Biology and Birth Defects Prevention: Blockade of the Glucocorticoid Receptor Prevents Arsenic-Induced Birth Defects

    Get PDF
    Background: The biological mechanisms by which environmental metals are associated with birth defects are largely unknown. Systems biology–based approaches may help to identify key pathways that mediate metal-induced birth defects as well as potential targets for prevention

    Arsenic in North Carolina: Public Health Implications

    Get PDF
    Arsenic is a known human carcinogen and relevant environmental contaminant in drinking water systems. We set out to comprehensively examine statewide arsenic trends and identify areas of public health concern. Specifically, arsenic trends in North Carolina private wells were evaluated over an eleven-year period using the North Carolina Department of Health and Human Services (NCDHHS) database for private domestic well waters. We geocoded over 63,000 domestic well measurements by applying a novel geocoding algorithm and error validation scheme. Arsenic measurements and geographical coordinates for database entries were mapped using Geographic Information System (GIS) techniques. Furthermore, we employed a Bayesian Maximum Entropy (BME) geostatistical framework, which accounts for geocoding error to better estimate arsenic values across the state and identify trends for unmonitored locations. Of the approximately 63,000 monitored wells, 7,712 showed detectable arsenic concentrations that ranged between 1 and 806 μg/L. Additionally, 1,436 well samples exceeded the EPA drinking water standard. We reveal counties of concern and demonstrate a historical pattern of elevated arsenic in some counties, particularly those located along the Carolina terrane (Carolina slate belt). We analyzed these data in the context of populations using private well water and identify counties for targeted monitoring, such as Stanly and Union Counties. By spatiotemporally mapping these data, our BME estimate revealed arsenic trends at unmonitored locations within counties and better predicted well concentrations when compared to the classical kriging method. This study reveals relevant information on the location of arsenic-contaminated private domestic wells in North Carolina and indicates potential areas at increased risk for adverse health outcomes

    Association between arsenic, cadmium, manganese, and lead levels in private wells and birth defects prevalence in North Carolina: a semi-ecologic study

    Get PDF
    Abstract: Background: Toxic metals including arsenic, cadmium, manganese, and lead are known human developmental toxicants that are able to cross the placental barrier from mother to fetus. In this population-based study, we assess the association between metal concentrations in private well water and birth defect prevalence in North Carolina. Methods: A semi-ecologic study was conducted including 20,151 infants born between 2003 and 2008 with selected birth defects (cases) identified by the North Carolina Birth Defects Monitoring Program, and 668,381 non-malformed infants (controls). Maternal residences at delivery and over 10,000 well locations measured for metals by the North Carolina Division of Public Health were geocoded. The average level of each metal was calculated among wells sampled within North Carolina census tracts. Individual exposure was assigned as the average metal level of the census tract that contained the geocoded maternal residence. Prevalence ratios (PR) with 95% confidence intervals (CI) were calculated to estimate the association between the prevalence of birth defects in the highest category (≥90th percentile) of average census tract metal levels and compared to the lowest category (≤50th percentile). Results: Statewide, private well metal levels exceeded the EPA Maximum Contaminant Level (MCL) or secondary MCL for arsenic, cadmium, manganese, and lead in 2.4, 0.1, 20.5, and 3.1 percent of wells tested. Elevated manganese levels were statistically significantly associated with a higher prevalence of conotruncal heart defects (PR: 1.6 95% CI: 1.1-2.5). Conclusions: These findings suggest an ecologic association between higher manganese concentrations in drinking water and the prevalence of conotruncal heart defects

    Association between arsenic, cadmium, manganese, and lead levels in private wells and birth defects prevalence in North Carolina: a semi-ecologic study

    Get PDF
    Abstract: Background: Toxic metals including arsenic, cadmium, manganese, and lead are known human developmental toxicants that are able to cross the placental barrier from mother to fetus. In this population-based study, we assess the association between metal concentrations in private well water and birth defect prevalence in North Carolina. Methods: A semi-ecologic study was conducted including 20,151 infants born between 2003 and 2008 with selected birth defects (cases) identified by the North Carolina Birth Defects Monitoring Program, and 668,381 non-malformed infants (controls). Maternal residences at delivery and over 10,000 well locations measured for metals by the North Carolina Division of Public Health were geocoded. The average level of each metal was calculated among wells sampled within North Carolina census tracts. Individual exposure was assigned as the average metal level of the census tract that contained the geocoded maternal residence. Prevalence ratios (PR) with 95% confidence intervals (CI) were calculated to estimate the association between the prevalence of birth defects in the highest category (≥90th percentile) of average census tract metal levels and compared to the lowest category (≤50th percentile). Results: Statewide, private well metal levels exceeded the EPA Maximum Contaminant Level (MCL) or secondary MCL for arsenic, cadmium, manganese, and lead in 2.4, 0.1, 20.5, and 3.1 percent of wells tested. Elevated manganese levels were statistically significantly associated with a higher prevalence of conotruncal heart defects (PR: 1.6 95% CI: 1.1-2.5). Conclusions: These findings suggest an ecologic association between higher manganese concentrations in drinking water and the prevalence of conotruncal heart defects

    So many filters, so little time : the development of a search filter appraisal checklist

    Get PDF
    Objectives: The authors developed a tool to assess the quality of search filters designed to retrieve records for studies with specific research designs (e.g., diagnostic studies). Methods: The UK InterTASC Information Specialists' Sub-Group (ISSG), a group of experienced health care information specialists, reviewed the literature to evaluate existing search filter appraisal tools and determined that existing tools were inadequate for their needs. The group held consensus meetings to develop a new filter appraisal tool consisting of a search filter appraisal checklist and a structured abstract. ISSG members tested the final checklist using three published search filters. Results: The detailed ISSG Search Filter Appraisal Checklist captures relevance criteria and methods used to develop and test search filters. The checklist includes categorical and descriptive responses and is accompanied by a structured abstract that provides a summary of key quality features of a filter. Discussion: The checklist is a comprehensive appraisal tool that can assist health sciences librarians and others in choosing search filters. The checklist reports filter design methods and search performance measures, such as sensitivity and precision. The checklist can also aid filter developers by indicating information on core methods that should be reported to help assess filter suitability. The generalizability of the checklist for non-methods filters remains to be explored.The work of InterTASC members, including the ISSG, is funded through the UK National Institute for Health Research Health Technology Assessment Programm

    Cadmium exposure and the epigenome: Exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs

    Get PDF
    Cadmium (Cd) is prevalent in the environment yet understudied as a developmental toxicant. Cd partially crosses the placental barrier from mother to fetus and is linked to detrimental effects in newborns. Here we examine the relationship between levels of Cd during pregnancy and 5-methylcytosine (5mC) levels in leukocyte DNA collected from 17 mother-newborn pairs. The methylation of cytosines is an epigenetic mechanism known to impact transcriptional signaling and influence health endpoints. A methylated cytosine-guanine (CpG) island recovery assay was used to assess over 4.6 million sites spanning 16,421 CpG islands. Exposure to Cd was classified for each mother-newborn pair according to maternal blood levels and compared with levels of cotinine. Subsets of genes were identified that showed altered DNA methylation levels in their promoter regions in fetal DNA associated with levels of Cd (n = 61), cotinine (n = 366), or both (n = 30). Likewise, in maternal DNA, differentially methylated genes were identified that were associated with Cd (n = 92) or cotinine (n = 134) levels. While the gene sets were largely distinct between maternal and fetal DNA, functional similarities at the biological pathway level were identified including an enrichment of genes that encode for proteins that control transcriptional regulation and apoptosis. Furthermore, conserved DNA motifs with sequence similarity to specific transcription factor binding sites were identified within the CpG islands of the gene sets. This study provides evidence for distinct patterns of DNA methylation or “footprints” in fetal and maternal DNA associated with exposure to Cd
    corecore