25 research outputs found

    Identifying Factors Influencing Decision Making in Patients Diagnosed with Carotid Body Tumors: An Exploratory Study

    Get PDF
    BackgroundCarotid body tumors (CBTs) are rare highly vascularized and slow enlarging tumors arising from the paraganglionic tissue at the carotid bifurcation. Main treatment options for CBTs are surgical resection or “wait and scan” strategy. The choice for either strategy may be equally good medically in many patients. A structured “shared decision making” (SDM) might be helpful for guiding patients.ObjectivesTo develop an SDM strategy for the surgical treatment, we aim to (1) identify considerations and factors involved in the decision making of patients with CBTs and (2) evaluate the current practice in our clinic and explore the opinions of patients on their treatment.MethodsThis exploratory study was conducted in patients of the Leiden University Medical Centre (LUMC), The Netherlands. Patients who met the inclusion criteria were invited for a semi-structured interview. All conversations were fully audiotaped and transcripted.ResultsFifteen patients were included and interviewed. Ten of these patients underwent previously surgical resection of at least one tumor. Five patients underwent the wait and scan policy. The most important factors influencing decision making in CBT treatment are family, fears, co-consultants, and doctor-patient relationship.ConclusionsThis study has identified the factors influencing decision making in CBT and should be considered during consultations. The decision for surgery or not was mainly influenced by physician preferences and family members' prior experiences.Cardiolog

    Synaptic Wnt signaling—a contributor to major psychiatric disorders?

    Get PDF
    Wnt signaling is a key pathway that helps organize development of the nervous system. It influences cell proliferation, cell fate, and cell migration in the developing nervous system, as well as axon guidance, dendrite development, and synapse formation. Given this wide range of roles, dysregulation of Wnt signaling could have any number of deleterious effects on neural development and thereby contribute in many different ways to the pathogenesis of neurodevelopmental disorders. Some major psychiatric disorders, including schizophrenia, bipolar disorder, and autism spectrum disorders, are coming to be understood as subtle dysregulations of nervous system development, particularly of synapse formation and maintenance. This review will therefore touch on the importance of Wnt signaling to neurodevelopment generally, while focusing on accumulating evidence for a synaptic role of Wnt signaling. These observations will be discussed in the context of current understanding of the neurodevelopmental bases of major psychiatric diseases, spotlighting schizophrenia, bipolar disorder, and autism spectrum disorder. In short, this review will focus on the potential role of synapse formation and maintenance in major psychiatric disorders and summarize evidence that defective Wnt signaling could contribute to their pathogenesis via effects on these late neural differentiation processes

    iTRAQ proteomic analysis of extracellular matrix remodeling in aortic valve disease

    Get PDF
    Degenerative aortic stenosis (AS) is the most common worldwide cause of valve replacement. The aortic valve is a thin, complex, layered connective tissue with compartmentalized extracellular matrix (ECM) produced by specialized cell types, which directs blood flow in one direction through the heart. There is evidence suggesting remodeling of such ECM during aortic stenosis development. Thus, a better characterization of the role of ECM proteins in this disease would increase our understanding of the underlying molecular mechanisms. Aortic valve samples were collected from 18 patients which underwent aortic valve replacement (50% males, mean age of 74 years) and 18 normal control valves were obtained from necropsies (40% males, mean age of 69 years). The proteome of the samples was analyzed by 2D-LC MS/MS iTRAQ methodology. The results showed an altered expression of 13 ECM proteins of which 3 (biglycan, periostin, prolargin) were validated by Western blotting and/or SRM analyses. These findings are substantiated by our previous results demonstrating differential ECM protein expression. The present study has demonstrated a differential ECM protein pattern in individuals with AS, therefore supporting previous evidence of a dynamic ECM remodeling in human aortic valves during AS development

    Predictors for postoperative cranial nerve complications in carotid body tumor resection: a retrospective cohort study

    Get PDF
    Introduction:Carotid body tumors (CBTs) are slow-growing benign tumors. Therefore, surgical resection is considered in case of tumor growth. The timing of surgery is of the utmost importance as the risk of iatrogenic surgical complications increases when resecting larger tumors, whereas on the other hand, resections for asymptomatic small CBT should be prevented. The primary aim of this study was to identify which tumor size or dimension is most accurate to predict nerve injury in patients undergoing resection of a CBT.Material and methods:This retrospective cohort study included patients who underwent surgical resection of CBT at the university hospital in South-Holland. Baseline patient characteristics and tumor measurements were retrieved from the medical records. The authors assessed how the different methods of measuring the size of the tumor were interrelated using Pearson correlation. Logistic regression was used to assess which variables were independently associated with nerve injury, including age at surgery, Shamblin classification, and those dimensions that captured different aspects of tumor size (rather than measuring the same as shown by high correlations) as possible independent variables.Results:In 125 patients, 143 CBTs were resected whereof in 35 cases cranial nerve injury occurred, (transient in 16 cases and permanent in 19 cases). The risks for nerve injury increased with larger tumor size and the Shamblin classification. Logistic regression analysis showed that the anterior-posterior (AP) diameter significantly increased the odds of a nerve injury, a doubling for every 1 cm increase in AP diameter [odds ratio (95% CI) 2.12 (1.29-3.48), P=0.003].Conclusion:This study shows that measured tumor size in the AP plane is a strong predictor for postoperative nerve injury of a CBT resection. This predictor can be used in the daily clinic to give insight in operative risks. More research is needed in order to select the most appropriate time window for CBT resection.Vascular Surger

    Association Study of 167 Candidate Genes for Schizophrenia Selected by a Multi-Domain Evidence-Based Prioritization Algorithm and Neurodevelopmental Hypothesis

    Get PDF
    Integrating evidence from multiple domains is useful in prioritizing disease candidate genes for subsequent testing. We ranked all known human genes (n = 3819) under linkage peaks in the Irish Study of High-Density Schizophrenia Families using three different evidence domains: 1) a meta-analysis of microarray gene expression results using the Stanley Brain collection, 2) a schizophrenia protein-protein interaction network, and 3) a systematic literature search. Each gene was assigned a domain-specific p-value and ranked after evaluating the evidence within each domain. For comparison to this ranking process, a large-scale candidate gene hypothesis was also tested by including genes with Gene Ontology terms related to neurodevelopment. Subsequently, genotypes of 3725 SNPs in 167 genes from a custom Illumina iSelect array were used to evaluate the top ranked vs. hypothesis selected genes. Seventy-three genes were both highly ranked and involved in neurodevelopment (category 1) while 42 and 52 genes were exclusive to neurodevelopment (category 2) or highly ranked (category 3), respectively. The most significant associations were observed in genes PRKG1, PRKCE, and CNTN4 but no individual SNPs were significant after correction for multiple testing. Comparison of the approaches showed an excess of significant tests using the hypothesis-driven neurodevelopment category. Random selection of similar sized genes from two independent genome-wide association studies (GWAS) of schizophrenia showed the excess was unlikely by chance. In a further meta-analysis of three GWAS datasets, four candidate SNPs reached nominal significance. Although gene ranking using integrated sources of prior information did not enrich for significant results in the current experiment, gene selection using an a priori hypothesis (neurodevelopment) was superior to random selection. As such, further development of gene ranking strategies using more carefully selected sources of information is warranted

    AKAPs integrate genetic findings for autism spectrum disorders

    Get PDF
    Contains fulltext : 115371.pdf (publisher's version ) (Open Access)Autism spectrum disorders (ASDs) are highly heritable, and six genome-wide association studies (GWASs) of ASDs have been published to date. In this study, we have integrated the findings from these GWASs with other genetic data to identify enriched genetic networks that are associated with ASDs. We conducted bioinformatics and systematic literature analyses of 200 top-ranked ASD candidate genes from five published GWASs. The sixth GWAS was used for replication and validation of our findings. Further corroborating evidence was obtained through rare genetic variant studies, that is, exome sequencing and copy number variation (CNV) studies, and/or other genetic evidence, including candidate gene association, microRNA and gene expression, gene function and genetic animal studies. We found three signaling networks regulating steroidogenesis, neurite outgrowth and (glutamatergic) synaptic function to be enriched in the data. Most genes from the five GWASs were also implicated-independent of gene size-in ASDs by at least one other line of genomic evidence. Importantly, A-kinase anchor proteins (AKAPs) functionally integrate signaling cascades within and between these networks. The three identified protein networks provide an important contribution to increasing our understanding of the molecular basis of ASDs. In addition, our results point towards the AKAPs as promising targets for developing novel ASD treatments

    Unique Effects of Acute Aripiprazole Treatment on the Dopamine D2 Receptor Downstream cAMP-PKA and Akt-GSK3β Signalling Pathways in Rats

    Get PDF
    Aripiprazole is a wide-used antipsychotic drug with therapeutic effects on both positive and negative symptoms of schizophrenia, and reduced side-effects. Although aripiprazole was developed as a dopamine D2 receptor (D2R) partial agonist, all other D2R partial agonists that aimed to mimic aripiprazole failed to exert therapeutic effects in clinic. The present in vivo study aimed to investigate the effects of aripiprazole on the D2R downstream cAMP-PKA and Akt-GSK3β signalling pathways in comparison with a D2R antagonist - haloperidol and a D2R partial agonist - bifeprunox. Rats were injected once with aripiprazole (0.75mg/kg, i.p.), bifeprunox (0.8mg/kg, i.p.), haloperidol (0.1mg/kg, i.p.) or vehicle. Five brain regions - the prefrontal cortex (PFC), nucleus accumbens (NAc), caudate putamen (CPu), ventral tegmental area (VTA) and substantia nigra (SN) were collected. The protein levels of PKA, Akt and GSK3β were measured by Western Blotting; the cAMP levels were examined by ELISA tests. The results showed that aripiprazole presented similar acute effects on PKA expression to haloperidol, but not bifeprunox, in the CPU and VTA. Additionally, aripiprazole was able to increase the phosphorylation of GSK3β in the PFC, NAc, CPu and SN, respectively, which cannot be achieved by bifeprunox and haloperidol. These results suggested that acute treatment of aripiprazole had differential effects on the cAMP-PKA and Akt-GSK3β signalling pathways from haloperidol and bifeprunox in these brain areas. This study further indicated that, by comparison with bifeprunox, the unique pharmacological profile of aripiprazole may be attributed to the relatively lower intrinsic activity at D2R

    Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways and up-regulates GABAA receptor expression and CREB1 activity in rats

    Get PDF
    Aripiprazole is a D2-like receptor (D2R) partial agonist with a favourable clinical profile. Previous investigations indicated that acute and short-term administration of aripiprazole had effects on PKA activity, GSK3β-dependent pathways, GABAA receptors, NMDA receptor and CREB1 in the brain. Since antipsychotics are used chronically in clinics, the present study investigated the long-term effects of chronic oral aripiprazole treatment on these cellular signalling pathways, in comparison with haloperidol (a D2R antagonist) and bifeprunox (a potent D2R partial agonist). We found that the Akt-GSK3β pathway was activated by aripiprazole and bifeprunox in the prefrontal cortex; NMDA NR2A levels were reduced by aripiprazole and haloperidol. In the nucleus accumbens, all three drugs increased Akt-GSK3β signalling; in addition, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3, β-catenin and GABAA receptors, NMDA receptor subunits, as well as CREB1 phosphorylation levels. The results suggest that chronic oral administration of aripiprazole affects schizophrenia-related cellular signalling pathways and markers (including Akt-GSK3β signalling, Dvl-GSK3β-β-catenin signalling, GABAA receptor, NMDA receptor and CREB1) in a brain-region-dependent manner; the selective effects of aripiprazole on these signalling pathways might be associated with its unique clinical effects
    corecore