19 research outputs found

    On Model Based Synthesis of Embedded Control Software

    Full text link
    Many Embedded Systems are indeed Software Based Control Systems (SBCSs), that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for control software. Given the formal model of a plant as a Discrete Time Linear Hybrid System and the implementation specifications (that is, number of bits in the Analog-to-Digital (AD) conversion) correct-by-construction control software can be automatically generated from System Level Formal Specifications of the closed loop system (that is, safety and liveness requirements), by computing a suitable finite abstraction of the plant. With respect to given implementation specifications, the automatically generated code implements a time optimal control strategy (in terms of set-up time), has a Worst Case Execution Time linear in the number of AD bits bb, but unfortunately, its size grows exponentially with respect to bb. In many embedded systems, there are severe restrictions on the computational resources (such as memory or computational power) available to microcontroller devices. This paper addresses model based synthesis of control software by trading system level non-functional requirements (such us optimal set-up time, ripple) with software non-functional requirements (its footprint). Our experimental results show the effectiveness of our approach: for the inverted pendulum benchmark, by using a quantization schema with 12 bits, the size of the small controller is less than 6% of the size of the time optimal one.Comment: Accepted for publication by EMSOFT 2012. arXiv admin note: substantial text overlap with arXiv:1107.5638,arXiv:1207.409

    In silico clinical trials through AI and statistical model checking

    Get PDF
    A Virtual Patient (VP) is a computational model accounting for individualised (patho-) physiology and Pharmaco-Kinetics/Dynamics of relevant drugs. Availability of VPs is among the enabling technology for In Silico Clinical Trials. Here we shortly outline the state of the art as for VP generation and summarise our recent work on Artificial Intelligence (AI) and Statistical Model Checking based generation of VPs

    The potential for peak shaving on low voltage distribution networks using electricity storage

    Get PDF
    Co-location of energy storage with demand provides several benefits over other locations, while still being able to provide balancing services to the grid. One of these additional benefits is deferral of distribution infrastructure reinforcement, allowing increased load growth. This paper considers the potential of electricity storage for peak shaving on distribution networks, focusing on residential areas. A demand model is used to synthesise high resolution domestic load profiles, and these are used within Monte Carlo analysis to determine how much peak shaving could be achieved with storage. An efficient method of finding the potential peak shaving using electricity storage is developed for this purpose. It is shown that moderate levels of storage capacity can deliver significant demand reductions, if suitably coordinated and incentivised. With 2 kWh of battery storage per household, the peak demand at low voltage substations could potentially be halved. The effects of PV capacity, household size and C rates are considered. With 3 kW PV per house, 4.5 kWh of batteries could keep peak flows at the same level as before the addition of PV. It is also shown that 3 kWh of battery storage per household could allow provision of all heating from heat pumps without increasing t he peak demand

    Reconciling interoperability with efficient Verification and Validation within open source simulation environments

    No full text
    A Cyber–Physical System (CPS) comprises physical as well as software subsystems. Simulation- based approaches are typically used to support design and Verification and Validation (V&V) of CPSs in several domains such as: aerospace, defence, automotive, smart grid and healthcare. Accordingly, many simulation-based tools are available to support CPS design. This, on one side, enables designers to choose the toolchain that best suits their needs, on the other side poses huge interoperability challenges when one needs to simulate CPSs whose subsystems have been designed and modelled using different toolchains. To overcome such an interoperability problem, in 2010 the Functional Mock-up Interface (FMI) has been proposed as an open standard to support both Model Exchange (ME) and Co-Simulation (CS) of simulation models created with different toolchains. FMI has been adopted by several modelling and simulation environments. Models adhering to such a standard are called Functional Mock-up Units (FMUs). Indeed FMUs play an essential role in defining complex CPSs through, e.g., the System Structure and Parametrisation (SSP) standard. Simulation-based V&V of CPSs typically requires exploring different simulation scenarios (i.e., exogenous input sequences to the CPS under design). Many such scenarios have a shared prefix. Accordingly, to avoid simulating many times such shared prefixes, the simulator state at the end of a shared prefix is saved and then restored and used as a start state for the simulation of the next scenario. In this context, an important FMI feature is the capability to save and re- store the internal FMU state on demand. This is crucial to increase efficiency of simulation-based V&V. Unfortunately, the implementation of this feature is not mandatory and it is available only within some commercial software. As a result, the interoperability enabled by the FMI standard cannot be fully exploited for V&V when using open-source simulation environments. This motivates developing such a feature for open-source CPS simulation environments. Accordingly, in this paper, we focus on JModelica, an open-source modelling and simulation environment for CPSs based on an open standard modelling language, namely Modelica. We describe how we have endowed JModelica with our open-source implementation of the FMI 2.0 functions needed to save and restore internal states of FMUs for ME. Furthermore, we present experimental results evaluating, through 934 benchmark models, correctness and efficiency of our extended JModelica. Our experimental results show that simulation-based V&V is, on average, 22 times faster with our get/set functionality than without it

    Linearising discrete time hybrid systems

    No full text
    Model-based design approaches for embedded systems aim at generating correct-by-construction control software, guaranteeing that the closed-loop system (controller and plant) meets given system level formal specifications. This technical note addresses control synthesis for safety and reachability properties of possibly nonlinear discrete-time hybrid systems. By means of a syntactical transformations that requires nonlinear terms to be Lipschitz continuous functions, we overapproximate nonlinear dynamics with a linear system whose controllers are guaranteed to be controllers of the original system. We evaluate performance of our approach on meaningful control synthesis benchmarks, also comparing it to a state-of-the-art tool

    Complete populations of virtual patients for in silico clinical trials

    Get PDF
    Motivation Model-based approaches to safety and efficacy assessment of pharmacological drugs, treatment strategies or medical devices (In Silico Clinical Trial, ISCT) aim to decrease time and cost for the needed experimentations, reduce animal and human testing, and enable precision medicine. Unfortunately, in presence of non-identifiable models (e.g. reaction networks), parameter estimation is not enough to generate complete populations of Virtual Patients (VPs), i.e. populations guaranteed to show the entire spectrum of model behaviours (phenotypes), thus ensuring representativeness of the trial. Results We present methods and software based on global search driven by statistical model checking that, starting from a (non-identifiable) quantitative model of the human physiology (plus drugs PK/PD) and suitable biological and medical knowledge elicited from experts, compute a population of VPs whose behaviours are representative of the whole spectrum of phenotypes entailed by the model (completeness) and pairwise distinguishable according to user-provided criteria. This enables full granularity control on the size of the population to employ in an ISCT, guaranteeing representativeness while avoiding over-representation of behaviours. We proved the effectiveness of our algorithm on a non-identifiable ODE-based model of the female Hypothalamic-Pituitary-Gonadal axis, by generating a population of 4 830 264 VPs stratified into 7 levels (at different granularity of behaviours), and assessed its representativeness against 86 retrospective health records from Pfizer, Hannover Medical School and University Hospital of Lausanne. The datasets are respectively covered by our VPs within Average Normalized Mean Absolute Error of 15%, 20% and 35% (90% of the latter dataset is covered within 20% error). Availability and implementation. Our open-source software is available at https://bitbucket.org/mclab/vipgenerato

    Linearizing Discrete-Time Hybrid Systems

    No full text

    Complete populations of virtual patients for in silico clinical trials

    Full text link
    Motivation Model-based approaches to safety and efficacy assessment of pharmacological drugs, treatment strategies or medical devices (In Silico Clinical Trial, ISCT) aim to decrease time and cost for the needed experimentations, reduce animal and human testing, and enable precision medicine. Unfortunately, in presence of non-identifiable models (e.g. reaction networks), parameter estimation is not enough to generate complete populations of Virtual Patients (VPs), i.e. populations guaranteed to show the entire spectrum of model behaviours (phenotypes), thus ensuring representativeness of the trial. Results We present methods and software based on global search driven by statistical model checking that, starting from a (non-identifiable) quantitative model of the human physiology (plus drugs PK/PD) and suitable biological and medical knowledge elicited from experts, compute a population of VPs whose behaviours are representative of the whole spectrum of phenotypes entailed by the model (completeness) and pairwise distinguishable according to user-provided criteria. This enables full granularity control on the size of the population to employ in an ISCT, guaranteeing representativeness while avoiding over-representation of behaviours. We proved the effectiveness of our algorithm on a non-identifiable ODE-based model of the female Hypothalamic-Pituitary-Gonadal axis, by generating a population of 4 830 264 VPs stratified into 7 levels (at different granularity of behaviours), and assessed its representativeness against 86 retrospective health records from Pfizer, Hannover Medical School and University Hospital of Lausanne. The datasets are respectively covered by our VPs within Average Normalized Mean Absolute Error of 15%, 20% and 35% (90% of the latter dataset is covered within 20% error). Availability and implementation. Our open-source software is available at https://bitbucket.org/mclab/vipgenerato

    The Use of Self-Reflective Essays in Creative Writing

    No full text
    Many Embedded Systems are indeed Software Based Control Systems, that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of embedded systems control software. This paper addresses control software synthesis for discrete time nonlinear hybrid systems. We present a methodology to overapproximate the dynamics of a discrete time nonlinear hybrid system H by means of a discrete time linear hybrid system LH, in such a way that controllers for LH are guaranteed to be controllers for H. We present experimental results on control software synthesis for the inverted pendulum, a challenging and meaningful control problem. © 2012 IEEE

    Optimal Personalised Treatment Computation through In Silico Clinical Trials on Patient Digital Twins

    Full text link
    In Silico Clinical Trials (ISCT), i.e. clinical experimental campaigns carried out by means of computer simulations, hold the promise to decrease time and cost for the safety and efficacy assessment of pharmacological treatments, reduce the need for animal and human testing, and enable precision medicine. In this paper we present methods and an algorithm that, by means of extensive computer simulation-based experimental campaigns (ISCT) guided by intelligent search, optimise a pharmacological treatment for an individual patient (precision medicine). We show the effectiveness of our approach on a case study involving a real pharmacological treatment, namely the downregulation phase of a complex clinical protocol for assisted reproduction in humans
    corecore