133 research outputs found
Multi-parametric metabolic assessment of cells under stress conditions
Glycolysis, glutaminolysis, the Krebs cycle and oxidative phosphorylation are the main metabolic pathways. Exposing cells to key metabolic substrates (glucose, glutamine and pyruvate); investigation of the contribution of substrates in stress conditions such as uncoupling and hypoxia was conducted. Glycolysis, O2 consumption, O2 and ATP levels and hypoxia inducible factor (HIF) signalling in PC12 cells were investigated. Upon uncoupling with FCCP mitochondria were depolarised similarly in all cases, but a strong increase in respiration was only seen in the cells fed on glutamine with either glucose or pyruvate. Inhibition of glutaminolysis reversed the glutamine dependant effect. Differential regulation of the respiratory response to FCCP by metabolic environment suggests mitochondrial uncoupling has a potential for substrate-specific inhibition of cell function. At reduced O2 availability (4 % and 0 % O2), cell bioenergetics and local oxygenation varied depending on the substrate composition. Results indicate that both supply and utilisation of key metabolic substrates can affect the pattern of HIF-1/2α accumulation by differentially regulating iO2¬, ATP levels and Akt/Erk/AMPK pathways. Inhibition of key metabolic pathways can modulate HIF regulatory pathways, metabolic responses and survival of cancer cells in hypoxia. Hypoxia leads to transcriptional activation, by HIF, of pyruvate dehydrogenase (PDH) kinase which phosphorylates and inhibits PDH, a mitochondrial enzyme that converts pyruvate into acetyl-CoA. The levels of PDH (total and phosphorylated), PDH kinase and HIF-1α were analysed in HCT116 and HCT116 SCO2-/- (deficient in complex IV of the respiratory chain) grown under 20.9 % and 3 % O2. Data indicate that regulation of PDH can occur in a manner independent of the HIF-1/PDH kinase 1 axis, mitochondrial respiration and the demand for acetyl-CoA. Collectively these results can be applied to many diseases; reduced nutrient supply and O2 during ischemia/stroke, hypoglycaemia in diabetes mellitus and cancer associated changes in uncoupling protein expression levels
Differential expression of cytokine transcripts in neonatal and adult ovine alveolar macrophages in response to respiratory syncytial virus or toll-like receptor ligation
Alveolar macrophages (AMϕs) secrete regulatory molecules that are believed to be critical in maintaining normal lung homeostasis. However, in response to activating signals, AMϕs have been shown to become highly phagocytic cells capable of secreting significant levels of pro-inflammatory cytokines. There is evidence to suggest that susceptibility of Mϕ subpopulations to viral infection, and their subsequent cytokine/chemokine response, is dependent on age of the host. In the present study, we compared bovine respiratory syncytial virus (BRSV) replication and induction of cytokine responses in neonatal ovine AMϕs to those cells isolated from adult animals. While neonatal AMϕs could be infected with BRSV, viral replication was limited as previously shown for AMϕs from mature animals. Interestingly, following BRSV infection, peak mRNA levels of IL-1β and IL-8 in neonatal AMϕ were several fold higher than levels induced in adult AMϕs. In addition, peak mRNA expression for the cytokines examined occurred at earlier time points in neonatal AMϕs compared to adult AMϕs. However, the data indicated that viral replication was not required for the induction of specific cytokines in either neonatal or adult AMϕs. TLR3 and TLR4 agonists induced significantly higher levels of cytokine transcripts than BRSV in both neonatal and adult AMϕs. It was recently proposed that immaturity of the neonatal immune system extends from production of pro-inflammatory cytokines to regulation of such responses. Differential regulation of cytokines in neonatal AMϕs compared to adult AMϕs in response to RSV could be a contributory factor to more severe clinical episodes seen in neonates
Debiased ambient vibrations optical coherence elastography to profile cell, organoid and tissue mechanical properties
The role of the mechanical environment in defining tissue function, development and growth has been shown to be fundamental. Assessment of the changes in stiffness of tissue matrices at multiple scales has relied mostly on invasive and often specialist equipment such as AFM or mechanical testing devices poorly suited to the cell culture workflow.In this paper, we have developed a unbiased passive optical coherence elastography method, exploiting ambient vibrations in the sample that enables real-time noninvasive quantitative profiling of cells and tissues. We demonstrate a robust method that decouples optical scattering and mechanical properties by actively compensating for scattering associated noise bias and reducing variance. The efficiency for the method to retrieve ground truth is validated in silico and in vitro, and exemplified for key applications such as time course mechanical profiling of bone and cartilage spheroids, tissue engineering cancer models, tissue repair models and single cell. Our method is readily implementable with any commercial optical coherence tomography system without any hardware modifications, and thus offers a breakthrough in on-line tissue mechanical assessment of spatial mechanical properties for organoids, soft tissues and tissue engineering
Characteristics of Patients with Oseltamivir-Resistant Pandemic (H1N1) 2009, United States
During April 2009–June 2010, thirty-seven (0.5%) of 6,740 pandemic (H1N1) 2009 viruses submitted to a US surveillance system were oseltamivir resistant. Most patients with oseltamivir-resistant infections were severely immunocompromised (76%) and had received oseltamivir before specimen collection (89%). No evidence was found for community circulation of resistant viruses; only 4 (unlinked) patients had no oseltamivir exposure
Embracing Monogenic Parkinson's Disease: The MJFF Global Genetic PD Cohort
Background As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. Objective The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. Results We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published. Conclusions Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Skunk River Review Fall 1997, Vol 9
https://openspace.dmacc.edu/skunkriver/1018/thumbnail.jp
The novel mitochondria-targeted hydrogen sulfide (H2S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro.
The development of diabetic vascular complications is initiated, at least in part, by mitochondrial reactive oxygen species (ROS) production in endothelial cells. Hyperglycemia induces superoxide production in the mitochondria and initiates changes in the mitochondrial membrane potential that leads to mitochondrial dysfunction. Hydrogen sulfide (H2S) supplementation has been shown to reduce the mitochondrial oxidant production and shows efficacy against diabetic vascular damage in vivo. However, the half-life of H2S is very short and it is not specific for the mitochondria. We have therefore evaluated two novel mitochondria-targeted anethole dithiolethione and hydroxythiobenzamide H2S donors (AP39 and AP123 respectively) at preventing hyperglycemia-induced oxidative stress and metabolic changes in microvascular endothelial cells in vitro. Hyperglycemia (HG) induced significant increase in the activity of the citric acid cycle and led to elevated mitochondrial membrane potential. Mitochondrial oxidant production was increased and the mitochondrial electron transport decreased in hyperglycemic cells. AP39 and AP123 (30-300nM) decreased HG-induced hyperpolarisation of the mitochondrial membrane and inhibited the mitochondrial oxidant production. Both H2S donors (30-300nM) increased the electron transport at respiratory complex III and improved the cellular metabolism. Targeting H2S to mitochondria retained the cytoprotective effect of H2S against glucose-induced damage in endothelial cells suggesting that the molecular target of H2S action is within the mitochondria. Mitochondrial targeting of H2S also induced >1000-fold increase in the potency of H2S against hyperglycemia-induced injury. The high potency and long-lasting effect elicited by these H2S donors strongly suggests that these compounds could be useful against diabetic vascular complications
Comparison of circulating tumor DNA assays for Molecular Residual Disease detection in early-stage triple negative breast cancer
Purpose: Detection of circulating tumor DNA (ctDNA) in patients who have completed treatment for early-stage breast cancer is associated with a high risk of relapse, yet the optimal assay for ctDNA detection is unknown. Experimental design: The cTRAK-TN clinical trial prospectively used tumor informed digital PCR (dPCR) assays for ctDNA molecular residual disease (MRD) detection in early-stage triple negative breast cancer. We compared tumor informed dPCR assays with tumor informed personalized multi-mutation sequencing assays in 141 patients from cTRAK-TN. Results: MRD was first detected by personalized sequencing in 47.9% of patients, 0% first detected by dPCR, and 52.1% with both assays simultaneously (p<0.001, Fisher’s exact test). The median lead time from ctDNA detection to relapse was 6.1 months with personalized sequencing and 3.9 months with dPCR (p=0.004, mixed effects Cox model). Detection of MRD at the first timepoint was associated with a shorter time to relapse compared with detection at subsequent timepoints (median lead time 4.2 vs 7.1 months, p=0.02). Conclusions: Personalized multi-mutation sequencing assays have potential clinically important improvements in clinical outcome in the early detection of MRD
- …