36 research outputs found

    From Simulated Mixtures to Simulated Conversations as Training Data for End-to-End Neural Diarization

    Full text link
    End-to-end neural diarization (EEND) is nowadays one of the most prominent research topics in speaker diarization. EEND presents an attractive alternative to standard cascaded diarization systems since a single system is trained at once to deal with the whole diarization problem. Several EEND variants and approaches are being proposed, however, all these models require large amounts of annotated data for training but available annotated data are scarce. Thus, EEND works have used mostly simulated mixtures for training. However, simulated mixtures do not resemble real conversations in many aspects. In this work we present an alternative method for creating synthetic conversations that resemble real ones by using statistics about distributions of pauses and overlaps estimated on genuine conversations. Furthermore, we analyze the effect of the source of the statistics, different augmentations and amounts of data. We demonstrate that our approach performs substantially better than the original one, while reducing the dependence on the fine-tuning stage. Experiments are carried out on 2-speaker telephone conversations of Callhome and DIHARD 3. Together with this publication, we release our implementations of EEND and the method for creating simulated conversations.Comment: Submitted to Interspeech 202

    A Deep Learning Approach for Robust Detection of Bots in Twitter Using Transformers

    Full text link
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksDuring the last decades, the volume of multimedia content posted in social networks has grown exponentially and such information is immediately propagated and consumed by a significant number of users. In this scenario, the disruption of fake news providers and bot accounts for spreading propaganda information as well as sensitive content throughout the network has fostered applied researh to automatically measure the reliability of social networks accounts via Artificial Intelligence (AI). In this paper, we present a multilingual approach for addressing the bot identification task in Twitter via Deep learning (DL) approaches to support end-users when checking the credibility of a certain Twitter account. To do so, several experiments were conducted using state-of-the-art Multilingual Language Models to generate an encoding of the text-based features of the user account that are later on concatenated with the rest of the metadata to build a potential input vector on top of a Dense Network denoted as Bot-DenseNet. Consequently, this paper assesses the language constraint from previous studies where the encoding of the user account only considered either the metadatainformation or the metadata information together with some basic semantic text features. Moreover, the Bot-DenseNet produces a low-dimensional representation of the user account which can be used for any application within the Information Retrieval (IR) framewor

    Voxceleb-ESP: preliminary experiments detecting Spanish celebrities from their voices

    Full text link
    This paper presents VoxCeleb-ESP, a collection of pointers and timestamps to YouTube videos facilitating the creation of a novel speaker recognition dataset. VoxCeleb-ESP captures real-world scenarios, incorporating diverse speaking styles, noises, and channel distortions. It includes 160 Spanish celebrities spanning various categories, ensuring a representative distribution across age groups and geographic regions in Spain. We provide two speaker trial lists for speaker identification tasks, each of them with same-video or different-video target trials respectively, accompanied by a cross-lingual evaluation of ResNet pretrained models. Preliminary speaker identification results suggest that the complexity of the detection task in VoxCeleb-ESP is equivalent to that of the original and much larger VoxCeleb in English. VoxCeleb-ESP contributes to the expansion of speaker recognition benchmarks with a comprehensive and diverse dataset for the Spanish language

    Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks

    Full text link
    Zazo R, Lozano-Diez A, Gonzalez-Dominguez J, T. Toledano D, Gonzalez-Rodriguez J (2016) Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks. PLoS ONE 11(1): e0146917. doi:10.1371/journal.pone.0146917Long Short Term Memory (LSTM) Recurrent Neural Networks (RNNs) have recently outperformed other state-of-the-art approaches, such as i-vector and Deep Neural Networks (DNNs), in automatic Language Identification (LID), particularly when dealing with very short utterances (similar to 3s). In this contribution we present an open-source, end-to-end, LSTM RNN system running on limited computational resources (a single GPU) that outperforms a reference i-vector system on a subset of the NIST Language Recognition Evaluation (8 target languages, 3s task) by up to a 26%. This result is in line with previously published research using proprietary LSTM implementations and huge computational resources, which made these former results hardly reproducible. Further, we extend those previous experiments modeling unseen languages (out of set, OOS, modeling), which is crucial in real applications. Results show that a LSTM RNN with OOS modeling is able to detect these languages and generalizes robustly to unseen OOS languages. Finally, we also analyze the effect of even more limited test data (from 2.25s to 0.1s) proving that with as little as 0.5s an accuracy of over 50% can be achieved.This work has been supported by project CMC-V2: Caracterizacion, Modelado y Compensacion de Variabilidad en la Señal de Voz (TEC2012-37585-C02-01), funded by Ministerio de Economia y Competitividad, Spain

    Multi-speaker and wide-band simulated conversations as training data for end-to-end neural diarization

    No full text
    End-To-end diarization presents an attractive alternative to standard cascaded diarization systems because a single system can handle all aspects of the task at once. Many flavors of end-To-end models have been proposed but all of them require (so far non-existing) large amounts of annotated data for training. The compromise solution consists in generating synthetic data and the recently proposed simulated conversations (SC) have shown remarkable improvements over the original simulated mixtures (SM). In this work, we create SC with multiple speakers per conversation and show that they allow for substantially better performance than SM, also reducing the dependence on a fine-Tuning stage. We also create SC with wide-band public audio sources and present an analysis on several evaluation sets. Together with this publication, we release the recipes for generating such data and models trained on public sets as well as the implementation to efficiently handle multiple speakers per conversation and an auxiliary voice activity detection lossThe work was supported by Czech Ministry of Interior project No. VJ01010108 ”ROZKAZ”, Czech National Science Foundation (GACR) project NEUREM3 No. 19-26934X, Horizon 2020 Marie Sklodowska-Curie grant ESPERANTO, No. 101007666 and grant PID2021-125943OB-I00, MCIN /AEI /10.13039/501100011033 / FEDER, UE. Computing on IT4I supercomputer was supported the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90140

    Multi-resolution speech analysis for automatic speech recognition using deep neural networks: Experiments on TIMIT.

    No full text
    Speech Analysis for Automatic Speech Recognition (ASR) systems typically starts with a Short-Time Fourier Transform (STFT) that implies selecting a fixed point in the time-frequency resolution trade-off. This approach, combined with a Mel-frequency scaled filterbank and a Discrete Cosine Transform give rise to the Mel-Frequency Cepstral Coefficients (MFCC), which have been the most common speech features in speech processing for the last decades. These features were particularly well suited for the previous Hidden Markov Models/Gaussian Mixture Models (HMM/GMM) state of the art in ASR. In particular they produced highly uncorrelated features of small dimensionality (typically 13 coefficients plus deltas and double deltas), which was very convenient for diagonal covariance GMMs, for dealing with the curse of dimensionality and for the limited computing resources of a decade ago. Currently most ASR systems use Deep Neural Networks (DNN) instead of the GMMs for modeling the acoustic features, which provides more flexibility regarding the definition of the features. In particular, acoustic features can be highly correlated and can be much larger in size because the DNNs are very powerful at processing high-dimensionality inputs. Also, the computing hardware has reached a level of evolution that makes computational cost in speech processing a less relevant issue. In this context we have decided to revisit the problem of the time-frequency resolution in speech analysis, and in particular to check if multi-resolution speech analysis (both in time and frequency) can be helpful in improving acoustic modeling using DNNs. Our experiments start with several Kaldi baseline system for the well known TIMIT corpus and modify them by adding multi-resolution speech representations by concatenating different spectra computed using different time-frequency resolutions and different post-processed and speaker-adapted features using different time-frequency resolutions. Our experiments show that using a multi-resolution speech representation tends to improve over results using the baseline single resolution speech representation, which seems to confirm our main hypothesis. However, results combining multi-resolution with the highly post-processed and speaker-adapted features, which provide the best results in Kaldi for TIMIT, yield only very modest improvements

    Deconstructing Cross-Entropy for Probabilistic Binary Classifiers

    No full text
    In this work, we analyze the cross-entropy function, widely used in classifiers both as a performance measure and as an optimization objective. We contextualize cross-entropy in the light of Bayesian decision theory, the formal probabilistic framework for making decisions, and we thoroughly analyze its motivation, meaning and interpretation from an information-theoretical point of view. In this sense, this article presents several contributions: First, we explicitly analyze the contribution to cross-entropy of (i) prior knowledge; and (ii) the value of the features in the form of a likelihood ratio. Second, we introduce a decomposition of cross-entropy into two components: discrimination and calibration. This decomposition enables the measurement of different performance aspects of a classifier in a more precise way; and justifies previously reported strategies to obtain reliable probabilities by means of the calibration of the output of a discriminating classifier. Third, we give different information-theoretical interpretations of cross-entropy, which can be useful in different application scenarios, and which are related to the concept of reference probabilities. Fourth, we present an analysis tool, the Empirical Cross-Entropy (ECE) plot, a compact representation of cross-entropy and its aforementioned decomposition. We show the power of ECE plots, as compared to other classical performance representations, in two diverse experimental examples: a speaker verification system, and a forensic case where some glass findings are present

    An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition.

    No full text
    Language recognition systems based on bottleneck features have recently become the state-of-the-art in this research field, showing its success in the last Language Recognition Evaluation (LRE 2015) organized by NIST (U.S. National Institute of Standards and Technology). This type of system is based on a deep neural network (DNN) trained to discriminate between phonetic units, i.e. trained for the task of automatic speech recognition (ASR). This DNN aims to compress information in one of its layers, known as bottleneck (BN) layer, which is used to obtain a new frame representation of the audio signal. This representation has been proven to be useful for the task of language identification (LID). Thus, bottleneck features are used as input to the language recognition system, instead of a classical parameterization of the signal based on cepstral feature vectors such as MFCCs (Mel Frequency Cepstral Coefficients). Despite the success of this approach in language recognition, there is a lack of studies analyzing in a systematic way how the topology of the DNN influences the performance of bottleneck feature-based language recognition systems. In this work, we try to fill-in this gap, analyzing language recognition results with different topologies for the DNN used to extract the bottleneck features, comparing them and against a reference system based on a more classical cepstral representation of the input signal with a total variability model. This way, we obtain useful knowledge about how the DNN configuration influences bottleneck feature-based language recognition systems performance
    corecore