218 research outputs found

    Advances in molecular probe-based labeling tools and their application to multiscale multimodal correlated microscopies

    Get PDF
    The need to determine the precise subcellular distribution of specific proteins and macromolecular complexes in cells and tissues has been the major driving force behind the development of new molecular-genetic and chemical-labeling approaches applicable to high-resolution, correlated, multidimensional microscopy. This short review is intended to provide an overview of recently developed and widely used electron microscopy (EM)-compatible probes, including tetracysteine tags, mini singlet oxygen generator (MiniSOG), time-specific tag for the age measurement of proteins (TimeSTAMP) with MiniSOG, and enhanced ascorbate peroxidase (APEX). We describe how these highly specific and genetically introduced EM probes are now used, in conjunction with lower resolution light microscopic methods, to obtain wide field or dynamic records of live preparation or of large maps in 3D using recently developed laboratory-scale X-ray microscopes. The article is intended to enable researchers through a high-level view of the toolbox of labels available today for studies aiming to analyze dynamic subcellular and molecular processes in cell culture systems as well as in animal tissues—and ultimately allow investigators to determine the precise location of macromolecular complexes by EM

    The Dopamine Transporter Recycles via a Retromer-Dependent Postendocytic Mechanism: Tracking Studies Using a Novel Fluorophore-Coupling Approach

    Get PDF
    Presynaptic reuptake, mediated by the dopamine (DA) transporter (DAT), terminates DAergic neurotransmission and constrains extracellular DA levels. Addictive and therapeutic psychostimulants inhibit DA reuptake and multiple DAT coding variants have been reported in patients with neuropsychiatric disorders. These findings underscore that DAT is critical for DA neurotransmission and homeostasis. DAT surface availability is regulated acutely by endocytic trafficking, and considerable effort has been directed toward understanding mechanisms that govern DAT\u27s plasma membrane expression and postendocytic fate. Multiple studies have demonstrated DAT endocytic recycling and enhanced surface delivery in response to various stimuli. Paradoxically, imaging studies have not detected DAT targeting to classic recycling endosomes, suggesting that internalized DAT targets to either degradation or an undefined recycling compartment. Here, we leveraged PRIME (PRobe Incorporation Mediated by Enzyme) labeling to couple surface DAT directly to fluorophore, and tracked DAT\u27s postendocytic itinerary in immortalized mesencephalic cells. Following internalization, DAT robustly targeted to retromer-positive endosomes, and DAT/retromer colocalization was observed in male mouse dopaminergic somatodendritic and terminal regions. Short hairpin RNA-mediated Vps35 knockdown revealed that DAT endocytic recycling requires intact retromer. DAT also targeted rab7-positive endosomes with slow, linear kinetics that were unaffected by either accelerating DAT internalization or binding a high-affinity cocaine analog. However, cocaine increased DAT exit from retromer-positive endosomes significantly. Finally, we found that the DAT carboxy-terminal PDZ-binding motif was required for DAT recycling and exit from retromer. These results define the DAT recycling mechanism and provide a unifying explanation for previous, seemingly disparate, DAT endocytic trafficking findings. SIGNIFICANCE STATEMENT The neuronal dopamine (DA) transporter (DAT) recaptures released DA and modulates DAergic neurotransmission, and a number of DAT coding variants have been reported in several DA-related disorders, including infantile parkinsonism, attention-deficit/hyperactivity disorder and autism spectrum disorder. DAT is also competitively inhibited by psychostimulants with high abuse potential. Therefore, mechanisms that acutely affect DAT availability will likely exert significant impact on both normal and pathological DAergic homeostasis. Here, we explore the cellular mechanisms that acutely control DAT surface expression. Our results reveal the intracellular mechanisms that mediate DAT endocytic recycling following constitutive and regulated internalization. In addition to shedding light on this critical process, these findings resolve conflict among multiple, seemingly disparate, previous reports on DAT\u27s postendocytic fate

    Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy

    Get PDF
    Electron microscopy (EM) is the standard method for imaging cellular structures with nanometer resolution, but existing genetic tags are inactive in most cellular compartments[superscript 1] or require light and can be difficult to use[superscript 2]. Here we report the development of 'APEX', a genetically encodable EM tag that is active in all cellular compartments and does not require light. APEX is a monomeric 28-kDa peroxidase that withstands strong EM fixation to give excellent ultrastructural preservation. We demonstrate the utility of APEX for high-resolution EM imaging of a variety of mammalian organelles and specific proteins using a simple and robust labeling procedure. We also fused APEX to the N or C terminus of the mitochondrial calcium uniporter (MCU), a recently identified channel whose topology is disputed[superscript 3, 4]. These fusions give EM contrast exclusively in the mitochondrial matrix, suggesting that both the N and C termini of MCU face the matrix. Because APEX staining is not dependent on light activation, APEX should make EM imaging of any cellular protein straightforward, regardless of the size or thickness of the specimen.National Institutes of Health (U.S.) (Grant DP1 OD003961)National Science Foundation (U.S.). Graduate Research Fellowship ProgramUnited States. Dept. of Defense (National Defense Science and Engineering Graduate (NDSEG) Fellowships

    Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    Get PDF
    Chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.National Institutes of Health (U.S.) (Grant DP1 OD003961)National Institutes of Health (U.S.) (R01 GM072670)American Chemical Societ

    Structure-Guided Engineering of a Pacific Blue Fluorophore Ligase for Specific Protein Imaging in Living Cells

    Get PDF
    Mutation of a gatekeeper residue, tryptophan 37, in E. coli lipoic acid ligase (LplA), expands substrate specificity such that unnatural probes much larger than lipoic acid can be recognized. This approach, however, has not been successful for anionic substrates. An example is the blue fluorophore Pacific Blue, which is isosteric to 7-hydroxycoumarin and yet not recognized by the latter’s ligase ([superscript W37V]LplA) or any tryptophan 37 point mutant. Here we report the results of a structure-guided, two-residue screening matrix to discover an LplA double mutant, [superscript E20G/W37T]LplA, that ligates Pacific Blue as efficiently as [superscript W37V]LplA ligates 7-hydroxycoumarin. The utility of this Pacific Blue ligase for specific labeling of recombinant proteins inside living cells, on the cell surface, and inside acidic endosomes is demonstrated.National Institutes of Health (U.S.) (Grant R01 GM072670)Camille & Henry Dreyfus FoundationAmerican Chemical SocietyMassachusetts Institute of Technolog
    • …
    corecore