717 research outputs found
Electronic Visualisation in Chemistry: From Alchemy to Art
Chemists now routinely use software as part of their work. For example,
virtual chemistry allows chemical reactions to be simulated. In particular, a
selection of software is available for the visualisation of complex
3-dimensional molecular structures. Many of these are very beautiful in their
own right. As well as being included as illustrations in academic papers, such
visualisations are often used on the covers of chemistry journals as
artistically decorative and attractive motifs. Chemical images have also been
used as the basis of artworks in exhibitions. This paper explores the
development of the relationship of chemistry, art, and IT. It covers some of
the increasingly sophisticated software used to generate these projections
(e.g., UCSF Chimera) and their progressive use as a visual art form.Comment: 8 pages, 27 figures, EVA London 201
Si and Mn Abundances in Damped Lya Systems with Low Dust Content
We have measured the abundances of Zn, Si, Mn, Cr, Fe, and Ni in three damped
Lyman alpha systems at redshifts z < 1 from high resolution echelle spectra of
QSOs recorded with the Keck I telescope. In all three cases the abundances of
Cr, Fe, and Ni relative to Zn indicate low levels of dust depletions. We
propose that when the proportion of refractory elements locked up in dust
grains is less than about 50 percent, it is plausible to assume an
approximately uniform level of depletion for all grain constituents and, by
applying a small dust correction, recover the intrisic abundances of Si and Mn.
We use this approach on a small sample of damped systems for which it is
appropriate, with the aim of comparing the metallicity dependence of the ratios
[Si/Fe] and [Mn/Fe] with analogous measurements in Milky Way stars. The main
conclusion is that the relative abundances of both elements in distant galaxies
are broadly in line with expectations based on Galactic data. Si displays a
mild enhancement at low metallicities, as expected for an alpha-capture
element, but there are also examples of near-solar [Si/Fe] at [Fe/H] < -1. The
underabundance of Mn at low metallicities is possibly even more pronounced than
that in metal-poor stars, and no absorption system has yet been found where
[Mn/Fe] is solar. The heterogeneous chemical properties of damped Lyman alpha
systems, evident even from this limited set of measurements, provide further
support for the conclusion from imaging studies that a varied population of
galaxies gives rise to this class of QSO absorbers.Comment: 29 pages, LaTex, 7 Postscript Figures. Accepted for Publication in
the Astrophysical Journa
Recommended from our members
Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02778g Click here for additional data file.
A novel reaction for chelate-free, heat-induced metal ion binding and radiolabeling of ultra-small paramagnetic iron oxide nanoparticles (USPIOs) has been established. Radiochemical and non-radioactive labeling studies demonstrated that the reaction has a wide chemical scope and is applicable to p-, d- and f-block metal ions with varying ionic sizes and formal oxidation states from 2+ to 4+. Radiolabeling studies found that 89Zr–Feraheme (89Zr–FH or 89Zr–ferumoxytol) can be isolated in 93 ± 3% radiochemical yield (RCY) and >98% radiochemical purity using size-exclusion chromatography. 89Zr–FH was found to be thermodynamically and kinetically stable in vitro using a series of ligand challenge and plasma stability tests, and in vivo using PET/CT imaging and biodistribution studies in mice. Remarkably, ICP-MS and radiochemistry experiments showed that the same reaction conditions used to produce 89Zr–FH can be employed with different radionuclides to yield 64Cu–FH (66 ± 6% RCY) and 111In–FH (91 ± 2% RCY). Electron magnetic resonance studies support a mechanism of binding involving metal ion association with the surface of the magnetite crystal core. Collectively, these data suggest that chelate-free labeling methods can be employed to facilitate clinical translation of a new class of multimodality PET/MRI radiotracers derived from metal-based nanoparticles. Further, this discovery is likely to have broader implications in drug delivery, metal separation science, ecotoxicology of nanoparticles and beyond
Hexanuclear Ln6L6 Complex Formation by using an Unsymmetric Ligand
Multinuclear, self‐assembled lanthanide complexes present clear opportunities as sensors and imaging agents. Despite the widely acknowledged potential of this class of supramolecule, synthetic and characterization challenges continue to limit systematic studies into their self‐assembly restricting the number and variety of lanthanide architectures reported relative to their transition metal counterparts. Here we present the first study evaluating the effect of ligand backbone symmetry on multinuclear lanthanide complex self‐assembly. Replacement of a symmetric ethylene linker with an unsymmetric amide at the centre of a homoditopic ligand governs formation of an unusual Ln6L6 complex with coordinatively unsaturated metal centres. The choice of triflate as a counterion, and the effect of ionic radii are shown to be critical for formation of the Ln6L6 complex. The atypical Ln6L6 architecture is characterized using a combination of mass spectrometry, luminescence, DOSY NMR and EPR spectroscopy measurements. Luminescence experiments support clear differences between comparable Eu6L6 and Eu2L3 complexes, with relatively short luminescent lifetimes and low quantum yields observed for the Eu6L6 structure indicative of non‐radiative decay processes. Synthesis of the Gd6L6analogue allows three distinct Gd···Gd distance measurements to be extracted using homo‐RIDME EPR experiments
The effects of user characteristics on query performance in the presence of information request ambiguity
This paper investigates the effects of personality characteristics on individuals' abilities to compose queries from information requests containing various types of ambiguity. In particular, this research examines the effects of user personality characteristics on query performance in the presence of information requests that contained no extraneous, syntactic, or both extraneous and syntactic ambiguities. The results indicate that personality characteristics significantly affect users' abilities to compose accurate queries. Neuroticism, agreeableness, openness to experience, and conscientiousness significantly affected the number of errors made in the query formulations. Conscientiousness affected the length of time taken to compose the queries and neuroticism affected the confidence users had in the accuracy of their queries. Although several personality dimensions affected query performance, no significant interactions between personality dimensions and ambiguity were detected. Furthermore, both query complexity and information request ambiguity exhibited greater impacts on query performance than personality characteristics. Hence, organizations should attempt to train users to deal with query complexity and information request ambiguity before modifying their training programs for personality characteristics
Sustainability in a changing world: integrating human health and wellbeing, urbanisation, and ecosystem services
There is an urgent need to address interlinked sustainability issues in a world challenged by inequality, finite resources and unprecedented changes across Earth’s systems. As Future Earth Fellows, based on our collective expertise in a diverse range of sustainability issues, here we identify a specific need to recognise and respond appropriately to the nexus between human health and wellbeing, urbanisation, and ecosystem services (the ‘WUE nexus’). This nexus is a priority area for research, policy and practice. In particular, it provides a useful pathway to meet the challenges of successful implementation of the Sustainable Development Goals (SDGs). In this brief, we present the following policy recommendations:1. By emphasising urban-rural linkages, foster an integrated approach to ensure food security, food safety, and health promotion;2. Secure resilient livelihoods for all, in particular for vulnerable groups; and3. Integrate co-production of knowledge in science for decision-making, including the co-design of implementation frameworks, and the adoption of a nexus approach.<br/
Regional Management Units for Marine Turtles: A Novel Framework for Prioritizing Conservation and Research across Multiple Scales
Background: Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques - including site-based monitoring, genetic analyses, mark-recapture studies and telemetry - can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. Methodology/Principal Findings: To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine-to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. Conclusions/Significance: The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework - including maps and supporting metadata - will be an iterative, user-driven tool made publicly available in an online application for comments, improvements, download and analysis
A structural model of a P450-ferredoxin complex from orientation-selective double electron-electron resonance spectroscopy
This research was supported by the Engineering & Physical Sciences Research Council (EPSRC) and the Biotechnology & Biological Sciences Research Council (BBSRC), UK (EP/D048559). AMB and EOJD were supported by graduate studentships from the BBSRC (BB/F01709X/1) and NJH and JEL were supported by graduate studentships from the EPSRC, and JEL after her DPhil by EP/D048559. AMB gratefully acknowledges her current fellowship support from the Royal Society and EPSRC for a Dorothy Hodgkin Fellowship (DH160004). JRH acknowledges support from the ARC (FT120100421) and the Centre for Advanced Imaging, The University of Queensland.Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of chemically inert carbon-hydrogen bonds in diverse endogenous and exogenous organic compounds by atmospheric oxygen. This C–H bond oxy-functionalization activity has huge potential in biotechnological applications. Class I CYPs receive the two electrons required for oxygen activation from NAD(P)H via a ferredoxin reductase and ferredoxin. The interaction of Class I CYPs with their cognate ferredoxin is specific. In order to reconstitute the activity of diverse CYPs, structural characterization of CYP-ferredoxin complexes is necessary, but little structural information is available. Here we report a structural model of such a complex (CYP199A2-HaPux) in frozen solution derived from distance and orientation restraints gathered by the EPR technique of orientation-selective double electron-electron resonance (os-DEER). The long-lived oscillations in the os-DEER spectra were well modeled by a single orientation of the CYP199A2-HaPux complex. The structure is different from the two known Class I CYP-Fdx structures: CYP11A1-Adx and CYP101A1-Pdx. At the protein interface, HaPux residues in the [Fe2S2] cluster-binding loop and the α3 helix, and the C-terminus residue interact with CYP199A2 residues in the proximal loop and the C helix. These residue contacts are consistent with biochemical data on CYP199A2-ferredoxin binding and electron transfer. Electron-tunneling calculations indicate an efficient electron-transfer pathway from the [Fe2S2] cluster to the heme. This new structural model of a CYP-Fdx complex provides the basis for tailoring CYP enzymes for which the cognate ferredoxin is not known, to accept electrons from HaPux and display monooxygenase activity.PostprintPeer reviewe
Global Conservation Priorities for Marine Turtles
Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs), and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts) we developed a “conservation priorities portfolio” system using categories of paired risk and threats scores for all RMUs (n = 58). We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority-setting for widespread, long-lived taxa
- …