22 research outputs found

    Entanglement Scrambling in 2d Conformal Field Theory

    Get PDF
    We investigate how entanglement spreads in time-dependent states of a 1+1 dimensional conformal field theory (CFT). The results depend qualitatively on the value of the central charge. In rational CFTs, which have central charge below a critical value, entanglement entropy behaves as if correlations were carried by free quasiparticles. This leads to long-term memory effects, such as spikes in the mutual information of widely separated regions at late times. When the central charge is above the critical value, the quasiparticle picture fails. Assuming no extended symmetry algebra, any theory with c>1c>1 has diminished memory effects compared to the rational models. In holographic CFTs, with c1c \gg 1, these memory effects are eliminated altogether at strong coupling, but reappear after the scrambling time tβlogct \gtrsim \beta \log c at weak coupling.Comment: 52 pages, 7 figure; v2: references adde

    Heavy-Heavy-Light-Light correlators in Liouville theory

    Full text link
    We compute four-point functions of two heavy and two "perturbatively heavy" operators in the semiclassical limit of Liouville theory on the sphere. We obtain these "Heavy-Heavy-Light-Light" (HHLL) correlators to leading order in the conformal weights of the light insertions in two ways: (a) via a path integral approach, combining different methods to evaluate correlation functions from complex solutions for the Liouville field, and (b) via the conformal block expansion. This latter approach identifies an integral over the continuum of normalizable states and a sum over an infinite tower of lighter discrete states, whose contribution we extract by analytically continuing standard results to our HHLL setting. The sum over this tower reproduces the sum over those complex saddlepoints of the path integral that contribute to the correlator. Our path integral computations reveal that when the two light operators are inserted at equal time in radial quantization, the leading-order HHLL correlator is independent of their separation, and more generally that at this order there is no short-distance singularity as the two light operators approach each other. The conformal block expansion likewise shows that in the discrete sum short-distance singularities are indeed absent for all intermediate states that contribute. In particular, the Virasoro vacuum block, which would have been singular at short distances, is not exchanged. The separation-independence of equal-time correlators is due to cancelations between the discrete contributions. These features lead to a Lorentzian singularity that, in conformal theories with anti-de Sitter (AdS) duals, would be associated to locality below the AdS scale.Comment: 40 pages, 1 figure; v2: clarifications added, minor typos corrected, published versio

    Holographic Entanglement Entropy from 2d CFT: Heavy States and Local Quenches

    Get PDF
    We consider the entanglement entropy in 2d conformal field theory in a class of excited states produced by the insertion of a heavy local operator. These include both high-energy eigenstates of the Hamiltonian and time-dependent local quenches. We compute the universal contribution from the stress tensor to the single interval Renyi entropies and entanglement entropy, and conjecture that this dominates the answer in theories with a large central charge and a sparse spectrum of low-dimension operators. The resulting entanglement entropies agree precisely with holographic calculations in three-dimensional gravity. High-energy eigenstates are dual to microstates of the BTZ black hole, so the corresponding holographic calculation is a geodesic length in the black hole geometry; agreement between these two answers demonstrates that entanglement entropy thermalizes in individual microstates of holographic CFTs. For local quenches, the dual geometry is a highly boosted black hole or conical defect. On the CFT side, the rise in entanglement entropy after a quench is directly related to the monodromy of a Virasoro conformal block.Comment: 30 pages, 5 figures; v2: minor clarifications and references adde

    Holographic second laws of black hole thermodynamics

    Get PDF
    Recently, it has been shown that for out-of-equilibrium systems, there are additional constraints on thermodynamical evolution besides the ordinary second law. These form a new family of second laws of thermodynamics, which are equivalent to the monotonicity of quantum R\'enyi divergences. In black hole thermodynamics, the usual second law is manifest as the area increase theorem. Hence one may ask if these additional laws imply new restrictions for gravitational dynamics, such as for out-of-equilibrium black holes? Inspired by this question, we study these constraints within the AdS/CFT correspondence. First, we show that the R\'enyi divergence can be computed via a Euclidean path integral for a certain class of excited CFT states. Applying this construction to the boundary CFT, the R\'enyi divergence is evaluated as the renormalized action for a particular bulk solution of a minimally coupled gravity-scalar system. Further, within this framework, we show that there exist transitions which are allowed by the traditional second law, but forbidden by the additional thermodynamical constraints. We speculate on the implications of our findings.Comment: 81 pages, 19 figures; v2: clarifications and reference added, minor typos corrected, published versio

    First law of holographic complexity

    Get PDF
    We investigate the variation of holographic complexity for two nearby target states. Based on Nielsen's geometric approach, we find the variation only depends on the end point of the optimal trajectory, a result which we designate the first law of complexity. As an example, we examine the complexity=action conjecture when the AdS vacuum is perturbed by a scalar field excitation, which corresponds to a coherent state. Remarkably, the gravitational contributions completely cancel and the final variation reduces to a boundary term coming entirely from the scalar field action. Hence the null boundary of Wheeler-DeWitt patch appears to act like the "end of the quantum circuit".Comment: 7 pages + supplemental material, 2 figures; v2: clarifications and reference added, published versio

    Aspects of The First Law of Complexity

    Get PDF
    We investigate the first law of complexity proposed in arXiv:1903.04511, i.e., the variation of complexity when the target state is perturbed, in more detail. Based on Nielsen's geometric approach to quantum circuit complexity, we find the variation only depends on the end of the optimal circuit. We apply the first law to gain new insights into the quantum circuits and complexity models underlying holographic complexity. In particular, we examine the variation of the holographic complexity for both the complexity=action and complexity=volume conjectures in perturbing the AdS vacuum with coherent state excitations of a free scalar field. We also examine the variations of circuit complexity produced by the same excitations for the free scalar field theory in a fixed AdS background. In this case, our work extends the existing treatment of Gaussian coherent states to properly include the time dependence of the complexity variation. We comment on the similarities and differences of the holographic and QFT results.Comment: 108 pages, 15 figures; v2: references adde

    Thermalization of Strongly Coupled Field Theories

    Get PDF
    Using the holographic mapping to a gravity dual, we calculate 2-point functions, Wilson loops, and entanglement entropy in strongly coupled field theories in d = 2, 3, and 4 to probe the scale dependence of thermalization following a sudden injection of energy. For homogeneous initial conditions, the entanglement entropy thermalizes slowest and sets a time scale for equilibration that saturates a causality bound. The growth rate of entanglement entropy density is nearly volume-independent for small volumes but slows for larger volumes. In this setting, the UV thermalizes first
    corecore