17 research outputs found

    Relationship between insulin sensitivity and gene expression in human skeletal muscle

    Get PDF
    BackgroundInsulin resistance (IR) in skeletal muscle is a key feature of the pre-diabetic state, hypertension, dyslipidemia, cardiovascular diseases and also predicts type 2 diabetes. However, the underlying molecular mechanisms are still poorly understood.MethodsTo explore these mechanisms, we related global skeletal muscle gene expression profiling of 38 non-diabetic men to a surrogate measure of insulin sensitivity, i.e. homeostatic model assessment of insulin resistance (HOMA-IR).ResultsWe identified 70 genes positively and 110 genes inversely correlated with insulin sensitivity in human skeletal muscle, identifying autophagy-related genes as positively correlated with insulin sensitivity. Replication in an independent study of 9 non-diabetic men resulted in 10 overlapping genes that strongly correlated with insulin sensitivity, including SIRT2, involved in lipid metabolism, and FBXW5 that regulates mammalian target-of-rapamycin (mTOR) and autophagy. The expressions of SIRT2 and FBXW5 were also positively correlated with the expression of key genes promoting the phenotype of an insulin sensitive myocyte e.g.PPARGC1A.ConclusionsThe muscle expression of 180 genes were correlated with insulin sensitivity. These data suggest that activation of genes involved in lipid metabolism, e.g.SIRT2, and genes regulating autophagy and mTOR signaling, e.g.FBXW5, are associated with increased insulin sensitivity in human skeletal muscle, reflecting a highly flexible nutrient sensing.Peer reviewe

    The T-allele of TCF7L2 rs7903146 associates with a reduced compensation of insulin secretion for insulin resistance induced by 9 days of bed rest

    Get PDF
    OBJECTIVE: The aim of this study was to determine whether the type 2 diabetes–associated T-allele of transcription factor 7-like 2 (TCF7L2) rs7903146 associates with impaired insulin secretion to compensate for insulin resistance induced by bed rest. RESEARCH DESIGN AND METHODS: A total of 38 healthy young Caucasian men were studied before and after bed rest using the hyperinsulinemic-euglycemic clamp technique combined with indirect calorimetry preceded by an intravenous glucose tolerance test. The TCF7L2 rs7903146 was genotyped using allelic discrimination performed with an ABI 7900 system. The genetic analyses were done assuming a dominant model of inheritance. RESULTS: The first-phase insulin response (FPIR) was significantly lower in carriers of the T-allele compared with carriers of the CC genotype before bed rest, with and without correction for insulin resistance. The incremental rise of FPIR in response to insulin resistance induced by bed rest was lower in carriers of the T-allele (P < 0.001). Fasting plasma glucagon levels were significantly lower in carriers of the T-allele before and after bed rest. While carriers of the CC genotype developed increased hepatic insulin resistance, the TCF7L2 rs7903146 did not influence peripheral insulin action or the rate of lipolysis before or after bed rest. CONCLUSIONS: Healthy carriers of the T-allele of TCF7L2 rs7903146 exhibit a diminished increase of insulin secretion in response to intravenous glucose to compensate for insulin resistance as induced by bed rest. Reduced paracrine glucagon stimulation may contribute to the impairment of β-cell function in the carriers TCF7L2 rs7903146 T-allele associated with increased risk of type 2 diabetes

    Comparison of treatment with insulin degludec and glargine U100 in patients with type 1 diabetes prone to nocturnal severe hypoglycaemia:The HypoDeg randomized, controlled, open-label, crossover trial

    Get PDF
    AIM: To investigate whether the long‐acting insulin analogue insulin degludec compared with insulin glargine U100 reduces the risk of nocturnal symptomatic hypoglycaemia in patients with type 1 diabetes (T1D). METHODS: Adults with T1D and at least one episode of nocturnal severe hypoglycaemia during the last 2 years were included in a 2‐year prospective, randomized, open, multicentre, crossover trial. A total of 149 patients were randomized 1:1 to basal‐bolus therapy with insulin degludec and insulin aspart or insulin glargine U100 and insulin aspart. Each treatment period lasted 1 year and consisted of 3 months of run‐in or crossover followed by 9 months of maintenance. The primary endpoint was the number of blindly adjudicated nocturnal symptomatic hypoglycaemic episodes. Secondary endpoints included the occurrence of severe hypoglycaemia. We analysed all endpoints by intention‐to‐treat. RESULTS: Treatment with insulin degludec resulted in a 28% (95% CI: 9%‐43%; P = .02) relative rate reduction (RRR) of nocturnal symptomatic hypoglycaemia at level 1 (≤3.9 mmol/L), a 37% (95% CI: 16%‐53%; P = .002) RRR at level 2 (≤3.0 mmol/L), and a 35% (95% CI: 1%‐58%; P = .04) RRR in all‐day severe hypoglycaemia compared with insulin glargine U100. CONCLUSIONS: Patients with T1D prone to nocturnal severe hypoglycaemia have lower rates of nocturnal symptomatic hypoglycaemia and all‐day severe hypoglycaemia with insulin degludec compared with insulin glargine U100

    Effect of Adjunct Metformin Treatment in Patients with Type-1 Diabetes and Persistent Inadequate Glycaemic Control. A Randomized Study

    Get PDF
    Despite intensive insulin treatment, many patients with type-1 diabetes (T1DM) have longstanding inadequate glycaemic control. Metformin is an oral hypoglycaemic agent that improves insulin action in patients with type-2 diabetes. We investigated the effect of a one-year treatment with metformin versus placebo in patients with T1DM and persistent poor glycaemic control.One hundred patients with T1DM, preserved hypoglycaemic awareness and HaemoglobinA(1c) (HbA(1c)) > or = 8.5% during the year before enrolment entered a one-month run-in on placebo treatment. Thereafter, patients were randomized (baseline) to treatment with either metformin (1 g twice daily) or placebo for 12 months (double-masked). Patients continued ongoing insulin therapy and their usual outpatient clinical care. The primary outcome measure was change in HbA(1c) after one year of treatment. At enrolment, mean (standard deviation) HbA(1c) was 9.48% (0.99) for the metformin group (n = 49) and 9.60% (0.86) for the placebo group (n = 51). Mean (95% confidence interval) baseline-adjusted differences after 12 months with metformin (n = 48) versus placebo (n = 50) were: HbA(1c), 0.13% (-0.19; 0.44), p = 0.422; Total daily insulin dose, -5.7 U/day (-8.6; -2.9), p<0.001; body weight, -1.74 kg (-3.32; -0.17), p = 0.030. Minor and overall major hypoglycaemia was not significantly different between treatments. Treatments were well tolerated.In patients with poorly controlled T1DM, adjunct metformin therapy did not provide any improvement of glycaemic control after one year. Nevertheless, adjunct metformin treatment was associated with sustained reductions of insulin dose and body weight. Further investigations into the potential cardiovascular-protective effects of metformin therapy in patients with T1DM are warranted.ClinicalTrials.gov NCT00118937
    corecore