20 research outputs found
Towards the early detection of melanoma by automating the measurement of asymmetry, border irregularity, color variegation, and diameter in dermoscopy images
The incidence of melanoma, the most aggressive form of skin cancer, has increased more than many other cancers in recent years. The aim of this thesis is to develop objective measures and automated methods to evaluate the ABCD (Asymmetry, Border irregularity, Color variegation, and Diameter) rule features in dermoscopy images, a popular method that provides a simple means for appraisal of pigmented lesions that might require further investigation by a specialist. However, research gaps in evaluating those features have been encountered in literature. To extract skin lesions, two segmentation approaches that are robust to inherent dermoscopic image problems have been proposed, and showed to outperform other approaches used in literature. Measures for finding asymmetry and border irregularity have been developed. The asymmetry measure describes invariant features, provides a compactness representation of the image, and captures discriminative properties of skin lesions. The border irregularity measure, which is preceded by a border detection step carried out by a novel edge detection algorithm that represents the image in terms of fuzzy concepts, is rotation invariant, characterizes the complexity of the shape associated with the border, and robust to noise. To automate the measures, classification methods that are based on ensemble learning and which take the ambiguity of data into consideration have been proposed. Color variegation was evaluated by determining the suspicious colors of melanoma from a generated color palette for the image, and the diameter of the skin lesion was measured using a shape descriptor that was eventually represented in millimeters. The work developed in the thesis reflects the automatic dermoscopic image analysis standard pipeline, and a computer-aided diagnosis system (CAD) for the automatic detection and objective evaluation of the ABCD rule features. It can be used as an objective bedside tool serving as a diagnostic adjunct in the clinical assessment of skin lesions
Automating the ABCD Rule for Melanoma Detection: A Survey
The ABCD rule is a simple framework that physicians, novice dermatologists and non-physicians can use to learn about the features of melanoma in its early curable stage, enhancing thereby the early detection of melanoma. Since the interpretation of the ABCD rule traits is subjective, different solutions have been proposed in literature to tackle such subjectivity and provide objective evaluations to the different traits. This paper reviews the main contributions in literature towards automating asymmetry, border irregularity, color variegation and diameter, where the different methods involved have been highlighted. This survey could serve as an essential reference for researchers interested in automating the ABCD rule
Towards the automatic detection of skin lesion shape asymmetry, color variegation and diameter in dermoscopic images
Asymmetry, color variegation and diameter are considered strong indicators of malignant melanoma. The subjectivity inherent in the first two features and the fact that 10% of melanomas tend to be missed in the early diagnosis due to having a diameter less than 6mm, deem it necessary to develop an objective computer vision system to evaluate these criteria and aid in the early detection of melanoma which could eventually lead to a higher 5-year survival rate. This paper proposes an approach for evaluating the three criteria objectively, whereby we develop a measure to find asymmetry with the aid of a decision tree which we train on the extracted asymmetry measures and then use to predict the asymmetry of new skin lesion images. A range of colors that demonstrate the suspicious colors for the color variegation feature have been derived, and Feret’s diameter has been utilized to find the diameter of the skin lesion. The decision tree is 80% accurate in determining the asymmetry of skin lesions, and the number of suspicious colors and diameter values are objectively identified
A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images
Skin lesion border irregularity is considered an important clinical feature for the early diagnosis of melanoma, representing the B feature in the ABCD rule. In this article we propose an automated approach for skin lesion border irregularity detection. The approach involves extracting the skin lesion from the image, detecting the skin lesion border, measuring the border irregularity, training a Convolutional Neural Network and Gaussian naive Bayes ensemble, to the automatic detection of border irregularity, which results in an objective decision on whether the skin lesion border is considered regular or irregular. The approach achieves outstanding results, obtaining an accuracy, sensitivity, specificity, and F-score of 93.6%, 100%, 92.5% and 96.1%, respectively
A Novel Evolutionary Swarm Fuzzy Clustering Approach for Hyperspectral Imagery
In land cover assessment, classes often gradually change from one to another. Therefore, it is difficult to allocate sharp boundaries between different classes of interest. To overcome this issue and model such conditions, fuzzy techniques that resemble human reasoning have been proposed as alternatives. Fuzzy C-means is the most common fuzzy clustering technique, but its concept is based on a local search mechanism and its convergence rate is rather slow, especially considering high-dimensional problems (e.g., in processing of hyperspectral images). Here, in order to address those shortcomings of hard approaches, a new approach is proposed, i.e., fuzzy C-means which is optimized by fractional order Darwinian particle swarm optimization. In addition, to speed up the clustering process, the histogram of image intensities is used during the clustering process instead of the raw image data. Furthermore, the proposed clustering approach is combined with support vector machine classification to accurately classify hyperspectral images. The new classification framework is applied on two well-known hyperspectral data sets; Indian Pines and Salinas. Experimental results confirm that the proposed swarm-based clustering approach can group hyperspectral images accurately in a time-efficient manner compared to other existing clustering techniques.PostPrin
A Novel Fuzzy Multilayer Perceptron (F-MLP) for the Detection of Irregularity in Skin Lesion Border Using Dermoscopic Images
Skin lesion border irregularity, which represents the B feature in the ABCD rule, is considered one of the most significant factors in melanoma diagnosis. Since signs that clinicians rely on in melanoma diagnosis involve subjective judgment including visual signs such as border irregularity, this deems it necessary to develop an objective approach to finding border irregularity. Increased research in neural networks has been carried out in recent years mainly driven by the advances of deep learning. Artificial neural networks (ANNs) or multilayer perceptrons have been shown to perform well in supervised learning tasks. However, such networks usually don't incorporate information pertaining the ambiguity of the inputs when training the network, which in turn could affect how the weights are being updated in the learning process and eventually degrading the performance of the network when applied on test data. In this paper, we propose a fuzzy multilayer perceptron (F-MLP) that takes the ambiguity of the inputs into consideration and subsequently reduces the effects of ambiguous inputs on the learning process. A new optimization function, the fuzzy gradient descent, has been proposed to reflect those changes. Moreover, a type-II fuzzy sigmoid activation function has also been proposed which enables finding the range of performance the fuzzy neural network is able to attain. The fuzzy neural network was used to predict the skin lesion border irregularity, where the lesion was firstly segmented from the skin, the lesion border extracted, border irregularity measured using a proposed measure vector, and using the extracted border irregularity measures to train the neural network. The proposed approach outperformed most of the state-of-the-art classification methods in general and its standard neural network counterpart in particular. However, the proposed fuzzy neural network was more time-consuming when training the network
A Deep Learning Based Approach to Skin Lesion Border Extraction with a Novel Edge Detector in Dermoscopy Images
Lesion border detection is considered a crucial step in diagnosing skin cancer. However, performing such a task automatically is challenging due to the low contrast between the surrounding skin and lesion, ambiguous lesion borders, and the presence of artifacts such as hair. In this paper we propose a two-stage approach for skin lesion border detection: (i) segmenting the skin lesion dermoscopy image using U-Net, and (ii) extracting the edges from the segmented image using a novel approach we call FuzzEdge. The proposed approach is compared with another published skin lesion border detection approach, and the results show that our approach performs better in detecting the main borders of the lesion and is more robust to artifacts that might be present in the image. The approach is also compared with the manual border drawings of a dermatologist, resulting in an average Dice similarity of 87.7%