37 research outputs found

    Growth of the protozoan parasite Entamoeba histolytica in 5-azacytidine has limited effects on parasite gene expression

    Get PDF
    BACKGROUND: In higher eukaryotes DNA methylation regulates important biological functions including silencing of gene expression and protection from adverse effects of retrotransposons. In the protozoan parasite Entamoeba histolytica, a DNA methyltransferase has been identified and treatment with 5-azacytidine (5-AzaC), a potent inhibitor of DNA methyltransferase, has been reported to attenuate parasite virulence. However, the overall extent of DNA methylation and its subsequent effects on global gene expression in this parasite are currently unknown. RESULTS: In order to identify the genome-wide effects of DNA methylation in E. histolytica, we used a short oligonucleotide microarray representing 9,435 genes (~95% of all annotated amebic genes) and compared the expression profile of E. histolytica HM-1:IMSS parasites with those treated with 23 ΞΌM 5-AzaC for up to one week. Overall, 2.1% of genes tested were transcriptionally modulated under these conditions. 68 genes were upregulated and 131 genes down regulated (2-fold change; p-value < 0.05). Sodium-bisulfite treatment and sequencing of genes indicated that there were at least two subsets of genes with genomic DNA methylation in E. histolytica: (i) genes that were endogenously silenced by genomic DNA methylation and for which 5-AzaC treatment induced transcriptional de-repression, and (ii) genes that have genomic DNA methylation, but which were not endogenously silenced by the methylation. We identified among the genes down regulated by 5-AzaC treatment a cysteine proteinase (2.m00545) and lysozyme (52.m00148) both of which have known roles in amebic pathogenesis. Decreased expression of these genes in the 5-AzaC treated E. histolytica may account in part for the parasites reduced cytolytic abilities. CONCLUSION: This work represents the first genome-wide analysis of DNA-methylation in Entamoeba histolytica and indicates that DNA methylation has relatively limited effects on gene expression in this parasite

    Biology and pathogenesis of Naegleria fowleri

    Get PDF
    Naegleria fowleri is a protist pathogen that can cause lethal brain infection. Despite decades of research, the mortality rate related with primary amoebic meningoencephalitis owing to N. fowleri remains more than 90%. The amoebae pass through the nose to enter the central nervous system killing the host within days, making it one of the deadliest opportunistic parasites. Accordingly, we present an up to date review of the biology and pathogenesis of N. fowleri and discuss needs for future research against this fatal infection

    Tissue Invasion by Entamoeba histolytica: Evidence of Genetic Selection and/or DNA Reorganization Events in Organ Tropism

    Get PDF
    Entamoeba histolytica infection may have various clinical manifestations. Nine out of ten E. histolytica infections remain asymptomatic, while the remainder become invasive and cause disease. The most common form of invasive infection is amebic diarrhea and colitis, whereas the most common extra-intestinal disease is amebic liver abscess. The underlying reasons for the different outcomes are unclear, but a recent study has shown that the parasite genotype is a contributor. To investigate this link further we have examined the genotypes of E. histolytica in stool- and liver abscess-derived samples from the same patients. Analysis of all 18 paired samples (16 from Bangladesh, one from the United States of America, and one from Italy) revealed that the intestinal and liver abscess amebae are genetically distinct. The results suggest either that E. histolytica subpopulations in the same infection show varying organ tropism, or that a DNA reorganization event takes place prior to or during metastasis from intestine to liver

    Proteomic Analysis of the Cyst Stage of Entamoeba histolytica

    Get PDF
    We used tandem mass spectrometry to identify E. histolytica cyst proteins in 5 cyst positive stool samples. We report the identification of 417 non-redundant E. histolytica proteins including 195 proteins that were not identified in existing trophozoite derived proteome or EST datasets, consistent with cyst specificity. Because the cysts were derived directly from patient samples with incomplete purification, a limited number of proteins were identified (Nβ€Š=β€Š417) that probably represent only a partial proteome. Nevertheless, the study succeeded in identifying proteins that are likely to be abundant in the cyst stage of the parasite. Several of these proteins may play roles in E. histolytica stage conversion or cyst function. Proteins identified in this study may be useful markers for diagnostic detection of E. histolytica cysts. Overall, the data generated in this study promises to aid the understanding of the cyst stage of the parasite which is vital for disease transmission and pathogenesis in E. histolytica

    Use of PCR Amplification of tRNA Gene-Linked Short Tandem Repeats for Genotyping Entamoeba histolytica

    No full text
    We have developed a reliable method for PCR-based genotyping of Entamoeba histolytica based on variation in the numbers of short tandem repeats that are linked to tRNA genes in this species. Species-specific primer pairs were designed that differentiate E. histolytica from E. dispar as well as that reveal intraspecies PCR product length polymorphisms. The primers were tested with samples from different parts of the world, and DNA was extracted from cultured cells as well as liver abscess pus and feces by various methods. We now have the tools necessary to investigate a possible link between parasite genotype and the outcome of infection with Entamoeba histolytica, as well as other aspects of the organism's epidemiology

    Unique organisation of tRNA genes in Entamoeba histolytica.

    No full text
    The genome sequence of the protistan parasite Entamoeba histolytica HM-1:IMSS has been completed recently. Among the findings has been a unique organisation for the tRNA genes in this organism. Forty-two of the tRNA isoacceptor types are encoded in tandem arrays that vary in unit length from 490 to 1775 basepairs and contain from 1 to 5 tRNA genes. In three cases a 5S RNA gene is also present in the unit. An estimated 10% of the genome is made up of these arrays. Interspersed between RNA-encoding sequences are short tandem repeats that are polymorphic between isolates and, in some cases, within isolates. The number and organisation of tRNA genes in E. histolytica is unprecedented. In addition to encoding the tRNAs of the organism we propose that the arrays may fulfil a structural role in the genome

    Pathogenesis

    No full text
    Primary amoebic meningoencephalitis usually occurs after the inhalation of water containing amoebae or flagellates. It also has been suggested that inhaling cysts, during dusts storms, for example, could lead to infection. Amoeba penetrate the nasal mucosa and the cribiform plate and travel along the olfactory nerves to the brain. Amoebae first invade the olfactory bulbs and then spread to the more posterior regions of the brain. Within the brain they provoke inflammation and cause extensive damage to the tissue. In view of the devastating nature of N. fowleri infection and the problems associated with successful prognosis, here we describe current understanding of the pathogenesis of primary amoebic meningoencephalitis, as well as factors that affect virulence of N. fowleri, with an eye to identify potential therapeutic targets

    Chemotherapeutic and Disinfection Strategies

    No full text
    While it is fortunate that primary amoebic meningoencephalitis is a rare disease, its rarity makes rigorous studies to find the most effective treatment difficult. The majority of studies rely on in vitro laboratory testing, mouse models of primary amoebic meningoencephalitis, and the few case reports of primary amoebic meningoencephalitis survivors to inform treatment recommendations for primary amoebic meningoencephalitis. In addition, the acquisition of drug resistance is a constant threat due to challenges in developing novel drugs. This chapter will present current treatment recommendations based on recent survivor case reports followed by a discussion of the drugs, treatment interventions used, promising new therapies and disinfection strategies
    corecore