50 research outputs found

    Perioperative fluid and volume management: physiological basis, tools and strategies

    Get PDF
    Fluid and volume therapy is an important cornerstone of treating critically ill patients in the intensive care unit and in the operating room. New findings concerning the vascular barrier, its physiological functions, and its role regarding vascular leakage have lead to a new view of fluid and volume administration. Avoiding hypervolemia, as well as hypovolemia, plays a pivotal role when treating patients both perioperatively and in the intensive care unit. The various studies comparing restrictive vs. liberal fluid and volume management are not directly comparable, do not differ (in most instances) between colloid and crystalloid administration, and mostly do not refer to the vascular barrier's physiologic basis. In addition, very few studies have analyzed the use of advanced hemodynamic monitoring for volume management

    Levosimendan versus dobutamine in septic shock

    No full text

    Effects of levosimendan in acute heart failure, cardiogenic and septic shock

    No full text

    Continuous cardiac output measurement by un-calibrated pulse wave analysis and pulmonary artery catheter in patients with septic shock

    Full text link
    Septic shock is a serious medical condition. With increased concerns about invasive techniques, a number of non-invasive and semi-invasive devices measuring cardiac output (CO) have become commercially available. The aim of the present study was to determine the accuracy, precision and trending abilities of the FloTrac and the continuous pulmonary artery catheter thermodilution technique determining CO in septic shock patients. Consecutive septic shock patients were included in two centres and CO was measured every 4 h up to 48 h by FloTrac (APCO) and by pulmonary artery catheter (PAC) using the continuous (CCO) and intermittent (ICO) technique. Forty-seven septic shock patients with 326 matched sets of APCO, CCO and ICO data were available for analysis. Bland and Altman analysis revealed a mean bias ±2 SD of 0.0 ± 2.14 L min−1 for APCO–ICO (%error = 34.5 %) and 0.23 ± 2.55 L min−1 for CCO–ICO (%error = 40.4 %). Trend analysis showed a concordance of 85 and 81 % for APCO and CCO, respectively. In contrast to CCO, APCO was influenced by systemic vascular resistance and by mean arterial pressure. In septic shock patients, APCO measurements assessed by FloTrac but also the established CCO measurements using the PAC did not meet the currently accepted statistical criteria indicating acceptable clinical performance
    corecore