54 research outputs found

    An analysis of low and high lexical meanings in a monolingual Arabic dictionary

    Get PDF
    This study investigated the difference between low and high meanings in a monolingual Arabic dictionary, namely Al-Munjid by (Ma’luf, 1973). As technical terms, low and high meanings were first introduced by (Sanat, 1998). They represent the gap between the ordinary usage of the lexical item, the low meaning, and the implied religious meaning, which is regarded as high. The study examined seven randomly-chosen lexical entries to see whether they cover all possible low and high meanings. Among the objectives of this study were: Firstly, to account for the veracity of the meanings in the given lexical items with respect to their low and high meanings. Secondly, to raise language users’ awareness of the tacit differences in meaning that may exist when religious contexts are considered. A descriptive analytical method was adopted and, hopefully, the outcome would help Arab lexicographers produce dictionaries accommodating low and high meanings that have already become an integral part of competent Arabic speakers’ vocabulary. It would also help draw the attention of Arabic dictionary users to such indispensable high meanings. Preliminary results of the study show that Al-Munjid dictionary tends not to list the high meanings, especially those found in Islamic resources, and instead purposefully focuses only on the low meanings. Based on these results, monolingual Arabic dictionaries are recommended to provide low and high meanings of the lexical entries side by side, as using examples from religious resources can be of major significance in rendering the meanings clearer and more comprehensive. Results and implications of the findings are to be discussed further

    A Novel Tantalum-Containing Bioglass. Part I. Structure and Solubility

    Get PDF
    Bio glasses are employed for surgical augmentation in a range of hard tissue applications. Tantalum is a bioactive and biocompatible transition metal that has been used as an orthopedic medical device. It has a range of biological and physical properties that make its incorporation into ionic form into bioactive glass systems promising for various clinical applications. The work herein reports the characterization and properties of novel tantalum-containing glasses. A series of glasses based on the system 48SiO2-(36-X)ZnO-6CaO-8SrO-2P2O5-XTa2O5 with X varying from 0 mol% (TA0) to 0.5 mol% (TA2) were synthesized. The addition of small amounts of Ta2O5 did not cause crystallization of the glasses but increasing Ta2O5 content at the expense of ZnO was found to result in an increased number of bridging oxygens (BOs). This, along with the data recorded by differential thermal analysis (DTA) and magic angle spinning-nuclear magnetic resonance (MAS-NMR), confirms that Ta acts as a glass former in this series. Solubility experiments showed that minor changes in the glass structure caused by Ta incorporation (0.5 mol%) exhibited greater cumulative % weight loss, pH values and cumulative Zn2+ and Sr2+ ion concentration over a period of 30 days of maturation, when compared to Ta2O5-free glasses. The results presented in this article confirm that replacing ZnO with Ta2O5 in silicate glasses results in the formation of stronger bonds within the glass network without any adverse effects on the solubility of the glasses prepared from them

    Interactive Facades Analysis and Synthesis of Semi-Regular Facades

    Get PDF
    Urban facades regularly contain interesting variations due to allowed deformations of repeated elements (e.g., windows in different open or close positions) posing challenges to state-of-the-art facade analysis algorithms. We propose a semi-automatic framework to recover both repetition patterns of the elements and their individual deformation parameters to produce a factored facade representation. Such a representation enables a range of applications including interactive facade images, improved multi-view stereo reconstruction, facade-level change detection, and novel image editing possibilities

    The Role of Poly(Acrylic Acid) in Conventional Glass Polyalkenoate Cements

    Get PDF
    Glass polyalkenoate cements (GPCs) have been used in dentistry for over 40 years. These novel bioactive materials are the result of a reaction between a finely ground glass (base) and a polymer (acid), usually poly (acrylic acid) (PAA), in the presence of water. This article reviews the types of PAA used as reagents (including how they vary by molar mass, molecular weight, concentration, polydispersity and content) and the way that they control the properties of the conventional GPCs (CGPCs) formulated from them. The article also considers the effect of PAA on the clinical performance of CGPCs, including biocompatibility, rheological and mechanical properties, adhesion, ion release, acid erosion and clinical durability. The review has critically evaluated the literature and clarified the role that the polyacid component of CGPCs plays in setting and maturation. This review will lead to an improved understanding of the chemistry and properties of the PAA phase which will lead to further innovation in the glass-based cements field

    License Plate Super-Resolution Using Diffusion Models

    Full text link
    In surveillance, accurately recognizing license plates is hindered by their often low quality and small dimensions, compromising recognition precision. Despite advancements in AI-based image super-resolution, methods like Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs) still fall short in enhancing license plate images. This study leverages the cutting-edge diffusion model, which has consistently outperformed other deep learning techniques in image restoration. By training this model using a curated dataset of Saudi license plates, both in low and high resolutions, we discovered the diffusion model's superior efficacy. The method achieves a 12.55\% and 37.32% improvement in Peak Signal-to-Noise Ratio (PSNR) over SwinIR and ESRGAN, respectively. Moreover, our method surpasses these techniques in terms of Structural Similarity Index (SSIM), registering a 4.89% and 17.66% improvement over SwinIR and ESRGAN, respectively. Furthermore, 92% of human evaluators preferred our images over those from other algorithms. In essence, this research presents a pioneering solution for license plate super-resolution, with tangible potential for surveillance systems

    A Novel Tantalum-Containing Bioglass. Part II. Development of a Bioadhesive for Sternal Fixation and Repair

    Get PDF
    With over a million median sternotomy surgeries performed worldwide every year, sternal wound complications have posed a serious risk to the affected patients. A rigid therapeutic sternal fixation device has therefore become a necessity. In this work, the incorporation of up to 0.5 mol% of tantalum pentoxide (Ta2O5), in exchange for zinc oxide (ZnO), into the SiO2-ZnO-CaO-SrO-P2O5 glass system is presented. The effect of Ta incorporation on the physical, chemical and biological properties of the glass polyalkenoate cements (GPCs) prepared from them have been presented in this manuscript. The data obtained have confirmed that Ta2O5 incorporation into the reference glass system results in increased working times, radiopacity, ion solubility, and long-term mechanical stability. The formulated glass systems have also shown clear antibacterial and antifungal activity against both Gram-negative (Escherichia coli) and Gram-positive prokaryotes (Staphylococcus aureus and Streptococcus epidermidis), as well as eukaryotes (Fusarium solani). Cytotoxicity testing showed that Ta incorporation results in no toxicity effect and may simulate osseo-integration when tested in animal models. These new metallic-containing biomaterial adhesives have been developed for sternal fixation and repair. As a permanent implant, the formulated adhesives can be used in conjunction with sternal cable ties to offer optimal fixation for patients and reduce post-operative complications such as bacterial infection and pain from micro-motion

    Injectable Glass Polyalkenoate Cements: Evaluation of their Rheological and Mechanical Properties with and Without the Incorporation of Lidocaine Hydrochloride

    Get PDF
    Lidocaine hydrochloride is used as an anesthetic in many clinical applications. This short communication investigates the effect of complete substitution of lidocaine hydrochloride for deionized (DI) water on the physico-chemical properties of two novel glass polyalkenoate cements. Substituting DI water with lidocaine hydrochloride resulted in cements with shorter working times but comparable setting times and mechanical properties. Fourier transform infrared spectroscopy confirmed that the setting reaction in cements containing DI water and lidocaine hydrochloride was completed within 24 h, post cement preparation and maturation. Further, it was explained that lidocaine hydrochloride binds to poly(acrylic) acid (PAA) due to electrostatic forces between the positively charged amino group of lidocaine hydrochloride and the carboxylic group of the PAA, resulting in a compact poly-complex precipitate

    The Effect of Calcination Rate on the Structure of Mesoporous Bioactive Glasses

    Get PDF
    Mesoporous bioactive glasses (MBGs) are designed to have high specific surface area. They are formulated by a sol–gel process to formulate the glass followed by calcination. This study evaluates how calcination heating rate influences the porous architecture, and thereby the specific surface area, of MBGs. MBGs of molar ratio 80:15:5 for SiO2 :CaO:P2 O 5 were calcined using both low (1 °C/min) and high (20 °C/min) heating rates, termed as L-MBG and H-MBG, respectively. The results obtained from small-angle X-ray diffraction (SAXRD) confirm that the MBGs possess 2D hexagonal (P6mm) spacing groups and wide-angle XRD confirms the amorphicity of both MBGs. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm that both batches of MBGs have similar chemical composition. Fourier transform infrared spectroscopy identifies the same functional groups present in both batches. However, transmission electron microscopy indicates that H-MBG samples exhibited discontinuities in their ordered channel structure, confirmed by the lower SAXRD peak intensity of H-MBG compared to L-MBG. These discontinuities led to a reduced surface area. L-MBG exhibits more than quadruple the surface area and double the pore volume (373.87 m2 /g and 0.27 cm3 /g) of H-MBG (85.91 m2 /g and 0.13 cm3 /g), measured through Brunauer, Emmett, and Teller nitrogen adsorption analysis. This higher surface area resulted in a significant (p \u3c 0.05) increase in the quantity of ion release from the L-MBGs compared to the H-MBGs. It is concluded that the application of a low heating rate during calcination, of the order of 1 °C/min, is more likely to result in ordered mesoporous bioactive glasses with high surface area and pore volume than MBG samples processed at a higher heating rate. [Figure not available: see fulltext.]

    In Vivo Analysis of a Proprietary Glass-Based Adhesive for Sternal Fixation and Stabilization using Rabbit and Sheep Models

    Get PDF
    Wire cerclage remains the standard method of care for sternal fixation, following median sternotomy, despite being beset with complications. An emerging treatment option has been to augment the wires with an adhesive. A patented ionomeric glass (mole fraction: SiO2:0.48, ZnO:0.36, CaO:0.12, SrO:0.04) has been used to formulate GPC+, a glass polyalkenoate cement (GPC), by mixing it with poly(acrylic) acid (PAA) and de-ionized water. In a human cadaver study, this material, when applied with wire cerclage, was able to significantly reduce sternal instability. However, the material has yet to be tested in pertinent animal models. Here, after a series of physical and mechanical tests to confirm suitability of the experimental material for implantation, three samples of GPC+ were implanted in either the tibia or femur of three different rabbits, alongside sham defects, for two different time modalities. A further seven samples of GPC+ and one poly(methyl methacrylate) control (PMMA) were implanted in either the tibia or femur of two different sheep. The sheep containing the PMMA was sacrificed at 8 weeks and the other at 16 weeks, to evaluate time dependent biological response. Upon sacrifice, microCT images were acquired and histology slides prepared for analysis. All three GPC+ samples implanted in the rabbit model, for the two time modalities, were characterized by minimal bone resorption along with a mild inflammatory response. Five of the seven GPC+ materials implanted in the sheep model (all three implanted for 8 weeks and two of those implanted for 16 weeks) were associated with mild to moderate immune response, comparable to that observed with PMMA, as well as mild bone resorption. The remaining two GPC + materials (implanted in the sheep model for 16 weeks) exhibited no bone resorption or inflammatory response and appeared to stimulate increased bone density at the implant site. These results suggest that GPC + can be a viable bone adhesive for use in hard tissue applications such as sternal fixation and stabilization. [Figure not available: see fulltext.
    • …
    corecore