2 research outputs found
Promising Antimycobacterial Activities of Flavonoids against Mycobacterium sp. Drug Targets: A Comprehensive Review
Tuberculosis (TB) caused by the bacterial pathogen Mycobacterium tuberculosis (Mtb) remains a threat to mankind, with over a billion of deaths in the last two centuries. Recent advancements in science have contributed to an understanding of Mtb pathogenesis and developed effective control tools, including effective drugs to control the global pandemic. However, the emergence of drug resistant Mtb strains has seriously affected the TB eradication program around the world. There is, therefore, an urgent need to develop new drugs for TB treatment, which has grown researchers’ interest in small molecule-based drug designing and development. The small molecules-based treatments hold significant potential to overcome drug resistance and even provide opportunities for multimodal therapy. In this context, various natural and synthetic flavonoids were reported for the effective treatment of TB. In this review, we have summarized the recent advancement in the understanding of Mtb pathogenesis and the importance of both natural and synthetic flavonoids against Mtb infection studied using in vitro and in silico methods. We have also included flavonoids that are able to inhibit the growth of non-tubercular mycobacterial organisms. Hence, understanding the therapeutic properties of flavonoids can be useful for the future treatment of TB
Genotypic and Phenotypic Characterization of Erythromycin-Resistant <i>Staphylococcus aureus</i> Isolated from Bovine Mastitis and Humans in Close Contact
Staphylococcus aureus (S. aureus) is a major causative agent of mastitis and is resistant to many antibiotics. Thus, there is a need to characterize the genetic determinants of S. aureus erythromycin resistance, such as ermA, ermB and ermC. The current study aimed to determine the phenotypic and genotypic erythromycin resistance profile and relatedness of S. aureus recovered from bovine mastitis and humans in close contact. A total of 14 mastitis-infected buffalo milk samples and 16 samples from their respective milkers were collected from different farms of Lahore, Pakistan. The antibiotic resistance profile was determined through the disk diffusion test. The overall prevalence of S. aureus in mastitis-affected buffaloes was found to be 75%, of which 52.1% were resistant to erythromycin and 42.8% to clindamycin. S. aureus isolates recovered from milker nasal samples showed 56.25% resistance to erythromycin and 44% resistance to clindamycin. Genotypic antibiotic resistance profiles were determined from 14 milk samples through PCR. Overall, eight (52.1%), three (21.4%) and five (35.7%) S. aureus isolates were positive for the ermA, ermB and ermC genes, respectively. Moreover, 16 milker nasal S. aureus isolates were also tested for the presence of ermA, ermB and ermC genes. The ermA, ermB and ermC genes were observed in nine(56.7%), five (31.3%) and seven (43.7%) isolates, respectively. A significant association was shown between phenotypic and genotypic erythromycin resistance. The results indicate both that there are sufficient genetic similarities, and the actual transmission of erythromycin resistance genes between these two hosts of S. aureus.</i