3 research outputs found

    Discovery of a Gas-Rich Companion to the Extremely Metal-Poor Galaxy DDO 68

    Get PDF
    We present HI spectral-line imaging of the extremely metal-poor galaxy DDO 68. This system has a nebular oxygen abundance of only 3% Z⊙_{\odot}, making it one of the most metal-deficient galaxies known in the local volume. Surprisingly, DDO 68 is a relatively massive and luminous galaxy for its metal content, making it a significant outlier in the mass-metallicity and luminosity-metallicity relationships. The origin of such a low oxygen abundance in DDO 68 presents a challenge for models of the chemical evolution of galaxies. One possible solution to this problem is the infall of pristine neutral gas, potentially initiated during a gravitational interaction. Using archival HI spectral-line imaging obtained with the Karl G. Jansky Very Large Array, we have discovered a previously unknown companion of DDO 68. This low-mass (MHI_{\rm HI} == 2.8×\times107^{7} M⊙_{\odot}), recently star-forming (SFRFUV_{\rm FUV} == 1.4×\times10−3^{-3} M⊙_{\odot} yr−1^{-1}, SFRHα_{\rm H\alpha} << 7×\times10−5^{-5} M⊙_{\odot} yr−1^{-1}) companion has the same systemic velocity as DDO 68 (Vsys_{\rm sys} == 506 km s−1^{-1}; D == 12.74±\pm0.27 Mpc) and is located at a projected distance of 42 kpc. New HI maps obtained with the 100m Robert C. Byrd Green Bank Telescope provide evidence that DDO 68 and this companion are gravitationally interacting at the present time. Low surface brightness HI gas forms a bridge between these objects.Comment: Accepted for publication in the Astrophysical Journal Letter

    The Role of Cold Gas in Low-Level Supermassive Black Hole Activity

    Get PDF
    The nature of the relationship between low-level supermassive black hole activity and galactic cold gas, if any, is currently unclear. It has been hypothesized that feedback may heat or expel gas and quench star formation; alternatively, central black holes may feed at higher rates (either directly or as a secondary effect from stellar winds) in gas-rich galaxies. We use a combination of radio data from the on-going ALFALFA survey and from the literature, along with archival X-ray flux measurements from the Chandra X-ray observatory, to investigate this potential relationship. We construct a sample of 136 late-type galaxies, with MB \u3c −18 out to 50 Mpc, that have both HI masses and sensitive X-ray coverage. Of these, 76 host a nuclear X-ray source, a 56% detection fraction. There is a highly significant correlation between LX and Mstar with a slope of 1.5±0.2, and a tentative correlation (significant at the 2.5σ level) between LX and MHI. However, a joint fit to LX as a function of both Mstar and MHI finds no significant dependence on MHI, and similarly the residuals of LX − LX(Mstar) show no trend with MHI. We conclude that the galaxy-wide cold gas content in these spirals does not strongly influence their low-level supermassive black hole activity
    corecore