3 research outputs found
Discovery of a Gas-Rich Companion to the Extremely Metal-Poor Galaxy DDO 68
We present HI spectral-line imaging of the extremely metal-poor galaxy DDO
68. This system has a nebular oxygen abundance of only 3% Z, making
it one of the most metal-deficient galaxies known in the local volume.
Surprisingly, DDO 68 is a relatively massive and luminous galaxy for its metal
content, making it a significant outlier in the mass-metallicity and
luminosity-metallicity relationships. The origin of such a low oxygen abundance
in DDO 68 presents a challenge for models of the chemical evolution of
galaxies. One possible solution to this problem is the infall of pristine
neutral gas, potentially initiated during a gravitational interaction. Using
archival HI spectral-line imaging obtained with the Karl G. Jansky Very Large
Array, we have discovered a previously unknown companion of DDO 68. This
low-mass (M 2.810 M), recently
star-forming (SFR 1.410 M yr,
SFR 710 M yr) companion has
the same systemic velocity as DDO 68 (V 506 km s; D
12.740.27 Mpc) and is located at a projected distance of 42 kpc. New HI
maps obtained with the 100m Robert C. Byrd Green Bank Telescope provide
evidence that DDO 68 and this companion are gravitationally interacting at the
present time. Low surface brightness HI gas forms a bridge between these
objects.Comment: Accepted for publication in the Astrophysical Journal Letter
The Role of Cold Gas in Low-Level Supermassive Black Hole Activity
The nature of the relationship between low-level supermassive black hole activity and galactic cold gas, if any, is currently unclear. It has been hypothesized that feedback may heat or expel gas and quench star formation; alternatively, central black holes may feed at higher rates (either directly or as a secondary effect from stellar winds) in gas-rich galaxies. We use a combination of radio data from the on-going ALFALFA survey and from the literature, along with archival X-ray flux measurements from the Chandra X-ray observatory, to investigate this potential relationship. We construct a sample of 136 late-type galaxies, with MB \u3c −18 out to 50 Mpc, that have both HI masses and sensitive X-ray coverage. Of these, 76 host a nuclear X-ray source, a 56% detection fraction. There is a highly significant correlation between LX and Mstar with a slope of 1.5±0.2, and a tentative correlation (significant at the 2.5σ level) between LX and MHI. However, a joint fit to LX as a function of both Mstar and MHI finds no significant dependence on MHI, and similarly the residuals of LX − LX(Mstar) show no trend with MHI. We conclude that the galaxy-wide cold gas content in these spirals does not strongly influence their low-level supermassive black hole activity