2,514 research outputs found

    Geometry Technology Module (GTM). Volume 1: Engineering description and utilization manual

    Get PDF
    The geometry technology module (GTM) is described as a system of computerized elements residing in the engineering design integration system library developed for the generation, manipulation, display, computation of mass properties, and data base management of panelled geometry. The GTM is composed of computer programs and associated data for performing configuration analysis on geometric shapes. The program can be operated in batch or demand mode and is designed for interactive use

    Color-flavor locked strange matter

    Full text link
    We analyze how the CFL states in dense matter work in the direction of enhancing the parameter space for absolutely stable phases (strange matter). We find that the "CFL strange matter" phase can be the true ground state of hadronic matter for a much wider range of the parameters of the model (the gap of the QCD Cooper pairs Δ\Delta, the strange quark mass msm_s and the Bag Constant BB) than the state without any pairing, and derive a full equation of state and an accurate analytic approximation to the lowest order in Δ\Delta and msm_{s} which may be directly used for applications. The effects of pairing on the equation of state are found to be small (as previously expected) but not negligible and may be relevant for astrophysics.Comment: 5 pages, 2 figure

    Illuminating Dense Quark Matter

    Get PDF
    We imagine shining light on a lump of cold dense quark matter, in the CFL phase and therefore a transparent insulator. We calculate the angles of reflection and refraction, and the intensity of the reflected and refracted light. Although the only potentially observable context for this phenomenon (reflection of light from and refraction of light through an illuminated quark star) is unlikely to be realized, our calculation casts new light on the old idea that confinement makes the QCD vacuum behave as if filled with a condensate of color-magnetic monopoles.Comment: 4 pages, 1 figur

    The engineering design integration (EDIN) system

    Get PDF
    A digital computer program complex for the evaluation of aerospace vehicle preliminary designs is described. The system consists of a Univac 1100 series computer and peripherals using the Exec 8 operating system, a set of demand access terminals of the alphanumeric and graphics types, and a library of independent computer programs. Modification of the partial run streams, data base maintenance and construction, and control of program sequencing are provided by a data manipulation program called the DLG processor. The executive control of library program execution is performed by the Univac Exec 8 operating system through a user established run stream. A combination of demand and batch operations is employed in the evaluation of preliminary designs. Applications accomplished with the EDIN system are described

    Color Magnetic Flux Tubes in Dense QCD

    Full text link
    QCD is expected to be in the color-flavor locking phase in high baryon density, which exhibits color superconductivity. The most fundamental topological objects in the color superconductor are non-Abelian vortices which are topologically stable color magnetic flux tubes. We present numerical solutions of the color magnetic flux tube for diverse choices of the coupling constants. We also analytically study its asymptotic profiles and find that they are different from the case of usual superconductors. We propose the width of color magnetic fluxes and find that it is larger than naive expectation of the Compton wave length of the massive gluon when the gluon mass is larger than the scalar mass.Comment: 24 pages, 5 figures; v2: typos corrected, references added, minor changes; v3: published versio

    Strange Stars with a Density-Dependent Bag Parameter

    Full text link
    We have studied strange quark stars in the framework of the MIT bag model, allowing the bag parameter B to depend on the density of the medium. We have also studied the effect of Cooper pairing among quarks, on the stellar structure. Comparison of these two effects shows that the former is generally more significant. We studied the resulting equation of state of the quark matter, stellar mass-radius relation, mass-central-density relation, radius-central-density relation, and the variation of the density as a function of the distance from the centre of the star. We found that the density-dependent B allows stars with larger masses and radii, due to stiffening of the equation of state. Interestingly, certain stellar configurations are found to be possible only if B depends on the density. We have also studied the effect of variation of the superconducting gap parameter on our results.Comment: 23 pages, 8 figs; v2: 25 pages, 9 figs, version to be published in Phys. Rev. (D

    Flux tubes and the type-I/type-II transition in a superconductor coupled to a superfluid

    Full text link
    We analyze magnetic flux tubes at zero temperature in a superconductor that is coupled to a superfluid via both density and gradient (``entrainment'') interactions. The example we have in mind is high-density nuclear matter, which is a proton superconductor and a neutron superfluid, but our treatment is general and simple, modeling the interactions as a Ginzburg-Landau effective theory with four-fermion couplings, including only s-wave pairing. We numerically solve the field equations for flux tubes with an arbitrary number of flux quanta, and compare their energies. This allows us to map the type-I/type-II transition in the superconductor, which occurs at the conventional kappa = 1/sqrt(2) if the condensates are uncoupled. We find that a density coupling between the condensates raises the critical kappa and, for a sufficiently high neutron density, resolves the type-I/type-II transition line into an infinite number of bands corresponding to ``type-II(n)'' phases, in which n, the number of quanta in the favored flux tube, steps from 1 to infinity. For lower neutron density, the coupling creates spinodal regions around the type-I/type-II boundary, in which metastable flux configurations are possible. We find that a gradient coupling between the condensates lowers the critical kappa and creates spinodal regions. These exotic phenomena may not occur in nuclear matter, which is thought to be deep in the type-II region, but might be observed in condensed matter systems.Comment: 14 pages, improved discussion of the effects of varying the neutron/proton condensate ratio; added reference

    Bulk viscosity in a cold CFL superfluid

    Get PDF
    We compute one of the bulk viscosity coefficients of cold CFL quark matter in the temperature regime where the contribution of mesons, quarks and gluons to transport phenomena is Boltzmann suppressed. In that regime dissipation occurs due to collisions of superfluid phonons, the Goldstone modes associated to the spontaneous breaking of baryon symmetry. We first review the hydrodynamics of relativistic superfluids, and remind that there are at least three bulk viscosity coefficients in these systems. We then compute the bulk viscosity coefficient associated to the normal fluid component of the superfluid. In our analysis we use Son's effective field theory for the superfluid phonon, amended to include scale breaking effects proportional to the square of the strange quark mass m_s. We compute the bulk viscosity at leading order in the scale breaking parameter, and find that it is dominated by collinear splitting and joining processes. The resulting transport coefficient is zeta=0.011 m_s^4/T, growing at low temperature T until the phonon fluid description stops making sense. Our results are relevant to study the rotational properties of a compact star formed by CFL quark matter.Comment: 19 pages, 2 figures; one reference added, version to be published in JCA
    • …
    corecore