2,514 research outputs found
Geometry Technology Module (GTM). Volume 1: Engineering description and utilization manual
The geometry technology module (GTM) is described as a system of computerized elements residing in the engineering design integration system library developed for the generation, manipulation, display, computation of mass properties, and data base management of panelled geometry. The GTM is composed of computer programs and associated data for performing configuration analysis on geometric shapes. The program can be operated in batch or demand mode and is designed for interactive use
Color-flavor locked strange matter
We analyze how the CFL states in dense matter work in the direction of
enhancing the parameter space for absolutely stable phases (strange matter). We
find that the "CFL strange matter" phase can be the true ground state of
hadronic matter for a much wider range of the parameters of the model (the gap
of the QCD Cooper pairs , the strange quark mass and the Bag
Constant ) than the state without any pairing, and derive a full equation of
state and an accurate analytic approximation to the lowest order in
and which may be directly used for applications. The effects of pairing
on the equation of state are found to be small (as previously expected) but not
negligible and may be relevant for astrophysics.Comment: 5 pages, 2 figure
Illuminating Dense Quark Matter
We imagine shining light on a lump of cold dense quark matter, in the CFL
phase and therefore a transparent insulator. We calculate the angles of
reflection and refraction, and the intensity of the reflected and refracted
light. Although the only potentially observable context for this phenomenon
(reflection of light from and refraction of light through an illuminated quark
star) is unlikely to be realized, our calculation casts new light on the old
idea that confinement makes the QCD vacuum behave as if filled with a
condensate of color-magnetic monopoles.Comment: 4 pages, 1 figur
The engineering design integration (EDIN) system
A digital computer program complex for the evaluation of aerospace vehicle preliminary designs is described. The system consists of a Univac 1100 series computer and peripherals using the Exec 8 operating system, a set of demand access terminals of the alphanumeric and graphics types, and a library of independent computer programs. Modification of the partial run streams, data base maintenance and construction, and control of program sequencing are provided by a data manipulation program called the DLG processor. The executive control of library program execution is performed by the Univac Exec 8 operating system through a user established run stream. A combination of demand and batch operations is employed in the evaluation of preliminary designs. Applications accomplished with the EDIN system are described
Geometry Technology Module (GTM). Volume 2: Programmers' manual
For abstract, see N75-17120
Color Magnetic Flux Tubes in Dense QCD
QCD is expected to be in the color-flavor locking phase in high baryon
density, which exhibits color superconductivity. The most fundamental
topological objects in the color superconductor are non-Abelian vortices which
are topologically stable color magnetic flux tubes. We present numerical
solutions of the color magnetic flux tube for diverse choices of the coupling
constants. We also analytically study its asymptotic profiles and find that
they are different from the case of usual superconductors. We propose the width
of color magnetic fluxes and find that it is larger than naive expectation of
the Compton wave length of the massive gluon when the gluon mass is larger than
the scalar mass.Comment: 24 pages, 5 figures; v2: typos corrected, references added, minor
changes; v3: published versio
Strange Stars with a Density-Dependent Bag Parameter
We have studied strange quark stars in the framework of the MIT bag model,
allowing the bag parameter B to depend on the density of the medium. We have
also studied the effect of Cooper pairing among quarks, on the stellar
structure. Comparison of these two effects shows that the former is generally
more significant. We studied the resulting equation of state of the quark
matter, stellar mass-radius relation, mass-central-density relation,
radius-central-density relation, and the variation of the density as a function
of the distance from the centre of the star. We found that the
density-dependent B allows stars with larger masses and radii, due to
stiffening of the equation of state. Interestingly, certain stellar
configurations are found to be possible only if B depends on the density. We
have also studied the effect of variation of the superconducting gap parameter
on our results.Comment: 23 pages, 8 figs; v2: 25 pages, 9 figs, version to be published in
Phys. Rev. (D
Flux tubes and the type-I/type-II transition in a superconductor coupled to a superfluid
We analyze magnetic flux tubes at zero temperature in a superconductor that
is coupled to a superfluid via both density and gradient (``entrainment'')
interactions. The example we have in mind is high-density nuclear matter, which
is a proton superconductor and a neutron superfluid, but our treatment is
general and simple, modeling the interactions as a Ginzburg-Landau effective
theory with four-fermion couplings, including only s-wave pairing. We
numerically solve the field equations for flux tubes with an arbitrary number
of flux quanta, and compare their energies. This allows us to map the
type-I/type-II transition in the superconductor, which occurs at the
conventional kappa = 1/sqrt(2) if the condensates are uncoupled.
We find that a density coupling between the condensates raises the critical
kappa and, for a sufficiently high neutron density, resolves the type-I/type-II
transition line into an infinite number of bands corresponding to
``type-II(n)'' phases, in which n, the number of quanta in the favored flux
tube, steps from 1 to infinity. For lower neutron density, the coupling creates
spinodal regions around the type-I/type-II boundary, in which metastable flux
configurations are possible. We find that a gradient coupling between the
condensates lowers the critical kappa and creates spinodal regions. These
exotic phenomena may not occur in nuclear matter, which is thought to be deep
in the type-II region, but might be observed in condensed matter systems.Comment: 14 pages, improved discussion of the effects of varying the
neutron/proton condensate ratio; added reference
Bulk viscosity in a cold CFL superfluid
We compute one of the bulk viscosity coefficients of cold CFL quark matter in
the temperature regime where the contribution of mesons, quarks and gluons to
transport phenomena is Boltzmann suppressed. In that regime dissipation occurs
due to collisions of superfluid phonons, the Goldstone modes associated to the
spontaneous breaking of baryon symmetry. We first review the hydrodynamics of
relativistic superfluids, and remind that there are at least three bulk
viscosity coefficients in these systems. We then compute the bulk viscosity
coefficient associated to the normal fluid component of the superfluid. In our
analysis we use Son's effective field theory for the superfluid phonon, amended
to include scale breaking effects proportional to the square of the strange
quark mass m_s. We compute the bulk viscosity at leading order in the scale
breaking parameter, and find that it is dominated by collinear splitting and
joining processes. The resulting transport coefficient is zeta=0.011 m_s^4/T,
growing at low temperature T until the phonon fluid description stops making
sense. Our results are relevant to study the rotational properties of a compact
star formed by CFL quark matter.Comment: 19 pages, 2 figures; one reference added, version to be published in
JCA
- …