2,485 research outputs found

    RAVEN: a GUI and an Artificial Intelligence Engine in a Dynamic PRA Framework

    Get PDF
    Increases in computational power and pressure for more accurate simulations and estimations of accident scenario consequences are driving the need for Dynamic Probabilistic Risk Assessment (PRA) [1] of very complex models. While more sophisticated algorithms and computational power address the back end of this challenge, the front end is still handled by engineers that need to extract meaningful information from the large amount of data and build these complex models. Compounding this problem is the difficulty in knowledge transfer and retention, and the increasing speed of software development. The above-described issues would have negatively impacted deployment of the new high fidelity plant simulator RELAP-7 (Reactor Excursion and Leak Analysis Program) at Idaho National Laboratory. Therefore, RAVEN that was initially focused to be the plant controller for RELAP-7 will help mitigate future RELAP-7 software engineering risks. In order to accomplish such a task Reactor Analysis and V

    Optimal execution strategies in limit order books with general shape functions

    Get PDF
    We consider optimal execution strategies for block market orders placed in a limit order book (LOB). We build on the resilience model proposed by Obizhaeva and Wang (2005) but allow for a general shape of the LOB defined via a given density function. Thus, we can allow for empirically observed LOB shapes and obtain a nonlinear price impact of market orders. We distinguish two possibilities for modeling the resilience of the LOB after a large market order: the exponential recovery of the number of limit orders, i.e., of the volume of the LOB, or the exponential recovery of the bid-ask spread. We consider both of these resilience modes and, in each case, derive explicit optimal execution strategies in discrete time. Applying our results to a block-shaped LOB, we obtain a new closed-form representation for the optimal strategy, which explicitly solves the recursive scheme given in Obizhaeva and Wang (2005). We also provide some evidence for the robustness of optimal strategies with respect to the choice of the shape function and the resilience-type

    Drift dependence of optimal trade execution strategies under transient price impact

    Full text link
    We give a complete solution to the problem of minimizing the expected liquidity costs in presence of a general drift when the underlying market impact model has linear transient price impact with exponential resilience. It turns out that this problem is well-posed only if the drift is absolutely continuous. Optimal strategies often do not exist, and when they do, they depend strongly on the derivative of the drift. Our approach uses elements from singular stochastic control, even though the problem is essentially non-Markovian due to the transience of price impact and the lack in Markovian structure of the underlying price process. As a corollary, we give a complete solution to the minimization of a certain cost-risk criterion in our setting

    Dynamic PRA: an Overview of New Algorithms to Generate, Analyze and Visualize Data

    Get PDF
    State of the art PRA methods, i.e. Dynamic PRA (DPRA) methodologies, largely employ system simulator codes to accurately model system dynamics. Typically, these system simulator codes (e.g., RELAP5 ) are coupled with other codes (e.g., ADAPT, RAVEN that monitor and control the simulation. The latter codes, in particular, introduce both deterministic (e.g., system control logic, operating procedures) and stochastic (e.g., component failures, variable uncertainties) elements into the simulation. A typical DPRA analysis is performed by: 1. Sampling values of a set of parameters from the uncertainty space of interest 2. Simulating the system behavior for that specific set of parameter values 3. Analyzing the set of simulation runs 4. Visualizing the correlations between parameter values and simulation outcome Step 1 is typically performed by randomly sampling from a given distribution (i.e., Monte-Carlo) or selecting such parameter values as inputs from the user (i.e., Dynamic Event Tre

    An Optimal Execution Problem with Market Impact

    Full text link
    We study an optimal execution problem in a continuous-time market model that considers market impact. We formulate the problem as a stochastic control problem and investigate properties of the corresponding value function. We find that right-continuity at the time origin is associated with the strength of market impact for large sales, otherwise the value function is continuous. Moreover, we show the semi-group property (Bellman principle) and characterise the value function as a viscosity solution of the corresponding Hamilton-Jacobi-Bellman equation. We introduce some examples where the forms of the optimal strategies change completely, depending on the amount of the trader's security holdings and where optimal strategies in the Black-Scholes type market with nonlinear market impact are not block liquidation but gradual liquidation, even when the trader is risk-neutral.Comment: 36 pages, 8 figures, a modified version of the article "An optimal execution problem with market impact" in Finance and Stochastics (2014

    Proper orthogonal decomposition of solar photospheric motions

    Full text link
    The spatio-temporal dynamics of the solar photosphere is studied by performing a Proper Orthogonal Decomposition (POD) of line of sight velocity fields computed from high resolution data coming from the MDI/SOHO instrument. Using this technique, we are able to identify and characterize the different dynamical regimes acting in the system. Low frequency oscillations, with frequencies in the range 20-130 microHz, dominate the most energetic POD modes (excluding solar rotation), and are characterized by spatial patterns with typical scales of about 3 Mm. Patterns with larger typical scales of 10 Mm, are associated to p-modes oscillations at frequencies of about 3000 microHz.Comment: 8 figures in jpg in press on PR

    Intrawell stochastic resonance versus interwell stochastic resonance in underdamped bistable systems

    Get PDF
    We show that, for periodically driven noisy underdamped bistable systems, an intrawell stochastic resonance can exist, together with the conventional interwell stochastic resonance, resulting in a double maximum in the power spectral amplitude at the forcing frequency as a function of the noise intensity. The locations of the maxima correspond to matchings of deterministic and stochastic time scales in the system. In this paper we present experimental evidence of these phenomena and a phemonological nonadiabatic description in terms of a noise-controlled nonlinear dynamic resonance

    THGEM-based detectors for sampling elements in DHCAL: laboratory and beam evaluation

    Get PDF
    We report on the results of an extensive R&D program aimed at the evaluation of Thick-Gas Electron Multipliers (THGEM) as potential active elements for Digital Hadron Calorimetry (DHCAL). Results are presented on efficiency, pad multiplicity and discharge probability of a 10x10 cm2 prototype detector with 1 cm2 readout pads. The detector is comprised of single- or double-THGEM multipliers coupled to the pad electrode either directly or via a resistive anode. Investigations employing standard discrete electronics and the KPiX readout system have been carried out both under laboratory conditions and with muons and pions at the CERN RD51 test beam. For detectors having a charge-induction gap, it has been shown that even a ~6 mm thick single-THGEM detector reached detection efficiencies above 95%, with pad-hit multiplicity of 1.1-1.2 per event; discharge probabilities were of the order of 1e-6 - 1e-5 sparks/trigger, depending on the detector structure and gain. Preliminary beam tests with a WELL hole-structure, closed by a resistive anode, yielded discharge probabilities of <2e-6 for an efficiency of ~95%. Methods are presented to reduce charge-spread and pad multiplicity with resistive anodes. The new method showed good prospects for further evaluation of very thin THGEM-based detectors as potential active elements for DHCAL, with competitive performances, simplicity and robustness. Further developments are in course.Comment: 15 pages, 11 figures, MPGD2011 conference proceedin

    Calibration of optimal execution of financial transactions in the presence of transient market impact

    Full text link
    Trading large volumes of a financial asset in order driven markets requires the use of algorithmic execution dividing the volume in many transactions in order to minimize costs due to market impact. A proper design of an optimal execution strategy strongly depends on a careful modeling of market impact, i.e. how the price reacts to trades. In this paper we consider a recently introduced market impact model (Bouchaud et al., 2004), which has the property of describing both the volume and the temporal dependence of price change due to trading. We show how this model can be used to describe price impact also in aggregated trade time or in real time. We then solve analytically and calibrate with real data the optimal execution problem both for risk neutral and for risk averse investors and we derive an efficient frontier of optimal execution. When we include spread costs the problem must be solved numerically and we show that the introduction of such costs regularizes the solution.Comment: 31 pages, 8 figure
    • …
    corecore