1,086 research outputs found
Nonradiative relaxation and laser action in tunable solid state laser crystals
Room-temperature pulsed laser action was obtained in chromium-activated forsterite (Cr:Mg2SiO4) for both 532 and 1064 nm pumping. Free running laser emission in both cases is centered at 1235 nm and has a bandwidth of approximately 30 nm. Slope efficiency as high as 22 percent was measured. Using different sets of output mirrors and a single birefrigent plate as the intracavity wavelength selecting element tunability over the 1167 to 1268 nm spectral range was demonstrated. Continuous wave laser operation at room temperature was obtained for 1064 nm pumping from a CW Nd:YAG laser. The output power slope efficiency is 6.8 percent. The gain cross section is estimated to be 1.1 x 10 to the 19th sq cm. Spectroscopic studies suggest that the laser action is due to a center other than the trivalent chromium (Cr 3+), presumably the tetravalent chromium (Cr 4+) in a tetrahedrally coordinated site
Tetravalent Chromium (Cr(4+)) as Laser-Active Ion for Tunable Solid-State Lasers
During 10/31/91 - 3/31/92, the following summarizes are major accomplishments: (1) numerical modeling of the four mirror astigmatically compensated, Z-fold cavity was performed; and (2) the simulation revealed several design parameters to be used for the construction of a femtosecond forsterite laser
Tetravalent chromium (Cr(4+)) as laser-active ion for tunable solid-state lasers
Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite (Cr(4+):Mg2SiO4) laser has been accomplished. The forsterite laser was actively mode-locked using an acousto-optic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(sub 00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured
Tetravalent Chromium (Cr(4+)) as Laser-Active Ion for Tunable Solid-State Lasers
During 10/31/92 - 3/31/93, the following summarizes our major accomplishments: (1) the self-mode-locked operation of the Cr:forsterite laser was achieved; (2) synchronous pumping was used to mode lock the forsterite laser resulting in picosecond pulses, which in turn provided the starting mechanism for self-mode-locking; and (3) the pulses generated had a FWHW of 105 fs and were tunable between 1230 - 1270 nm
Tetravalent chromium (Cr(4+)) as laser-active ion for tunable solid-state lasers
Major accomplishments under NASA grant NAG-1-1346 are summarized. (1) numerical modeling of the four mirror astigmatically compensated, Z-fold cavity was performed and several design parameters to be used for the construction of a femtosecond forsterite laser were revealed by simulation. (2) femtosecond pulses from a continuous wave mode-locked chromium doped forsterite laser were generated. The forsterite laser was actively mode-locked using an acousto-optic modulator operating at 78 MHz with two Brewster high dispersion glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(sub 00) mode with 85 mW of continuous power tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured. (3) Self-mode-locked operation of the Cr:forsterite laser was achieved. Synchronous pumping was used to mode lock the forsterite laser resulting in picosecond pulses, which in turn provided the starting mechanism for self-mode-locking. The pulses generated had an FWHM of 105 fs and were tunable between 1230-1270 nm. (4) Numerical calculations indicated that the pair of SF 14 prisms used in the cavity compensated for quadratic phase but introduced a large cubic phase term. Further calculations of other optical glasses indicated that a pair of SFN 64 prisms can introduce the same amount of quadratic phase as SF 14 prisms but introduce a smaller cubic phase. When the SF 14 prisms were replaced by SFN 64 prisms the pulsewidth was reduced to 50 fs. Great improvement was observed in the stability of the self mode-locked forsterite laser and in the ease of achieving mode locking. Using the same experimental arrangement and a new forsterite crystal with improved FOM the pulse width was reduced to 36 fs
Fast and Accurate Computation of Orbital Collision Probability for Short-Term Encounters
International audienceThis article provides a new method for computing the probability of collision between two spherical space objects involved in a short-term encounter under Gaussian-distributed uncertainty. In this model of conjunction, classical assumptions reduce the probability of collision to the integral of a two-dimensional Gaussian probability density function over a disk. The computational method presented here is based on an analytic expression for the integral, derived by use of Laplace transform and D-finite functions properties. The formula has the form of a product between an exponential term and a convergent power series with positive coefficients. Analytic bounds on the truncation error are also derived and are used to obtain a very accurate algorithm. Another contribution is the derivation of analytic bounds on the probability of collision itself, allowing for a very fast and - in most cases - very precise evaluation of the risk. The only other analytical method of the literature - based on an approximation - is shown to be a special case of the new formula. A numerical study illustrates the efficiency of the proposed algorithms on a broad variety of examples and favorably compares the approach to the other methods of the literature
A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation
We present a new approach to the design of optical microstructured fibers that have group velocity dispersion (GVD) and effective nonlinear coefficient (gamma ) tailored for supercontinuum (SC) generation. This hybrid approach combines a genetic algorithm (GA) with pulse propagation modeling, but without include it into the GA loop, to allow the efficient design of fibers that are capable of generating highly coherent and large bandwidth SC in the mid-infrared (Mid-IR) spectrum. To the best of our knowledge, this is the first use of a GA to design fiber for SC generation. We investigate the robustness of these fiber designs to variation in the fiber's structural parameters. The optimized fiber structure based on a type of tellurite glass (70TeO(2) - 10 Na(2)O - 20 ZnF(2)) is predicted to have near-zero group velocity dispersion (< +/-2 ps/nm/km) from 2 to 3 microm, and a effective nonlinear coefficient of gamma approximately 174 W(-1)km(-1) at 2 microm. The SC output of this fiber shows a significant bandwidth and coherence increase compare to a fiber with a single zero group velocity dispersion wavelength at 2 microm.Wen Qi Zhang, Shahraam Afshar V. and Tanya M. Monr
Pruning biomass potential in Italy related to crop characteristics, agricultural practices and agro-climatic conditions
This work, developed under the EuroPruning Project, aims to look at relations between pruning biomass production and several factors related both to crop species and management. The aim is to find out mathematical relations that allow improvement of the biomass potential assessment. This is generally calculated using biomass production ratios. These ratios are variable due to the influence of several aspects. On the one hand there are crop characteristics—such as species, cultivar, and age—and on the other, crop management, which is often associated to local habits and conditions such as the training system, planting pattern, density, pruning methods, irrigation and climate. This work has been produced by gathering data from literature reviews and surveying. The subset of Italian records in the EuroPruning database consists of 70 records. Each record contains the biomass production ratio and eight agronomic variables. Additionally, a set of six climatic and agro-climatic groups of variables (in total 28 variables) have been added to each record. Moderate to good correlations have been found, especially with few climatic factors. As a result, two regression models are proposed for the evaluation of the vineyard and olive tree pruning biomass ratios for Italy, and applied to assess pruning biomass potential
- …