2 research outputs found

    Nanostructures For Protein Drug Delivery

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Use of nanoscale devices as carriers for drugs and imaging agents has been extensively investigated and successful examples can already be found in therapy. In parallel, recombinant DNA technology together with molecular biology has opened up numerous possibilities for the large-scale production of many proteins of pharmaceutical interest, reflecting in the exponentially growing number of drugs of biotechnological origin. When we consider protein drugs, however, there are specific criteria to take into account to select adequate nanostructured systems as drug carriers. In this review, we highlight the main features, advantages, drawbacks and recent developments of nanostructures for protein encapsulation, such as nanoemulsions, liposomes, polymersomes, single-protein nanocapsules and hydrogel nanoparticles. We also discuss the importance of nanoparticle stabilization, as well as future opportunities and challenges in nanostructures for protein drug delivery.42205218Coordination for Higher Level Graduate Improvements (CAPES/Brazil)National Council for Scientific and Technological Development (CNPq/Brazil)State of Sao Paulo Research Foundation (FAPESP/Brazil) [2013/08617-7, 2013/16588-7, 2014/01983-0, 2014/10456-4]FAPESPCNPqCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    5CN05 partitioning in an aqueous two-phase system: A new approach to the solubilization of hydrophobic drugs

    No full text
    Liquid-liquid extraction for the purification of molecules has been central to many advances in the pharmaceutical industry. These processes were developed based on the property that some polymer and/or micellar solutions present to separate into a concentrated phase and a diluted phase. Based on the differences in the physical and chemical environments of the two coexisting phases, and since both phases contain approximately 60-90% of water, liquid-liquid extraction provides a powerful alternative to both extract and solubilize a molecule. This paper examines the partition behavior of the synthetic drug, 2-[(3,4-dichlorine-benzylidene)-amino]-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile (5CN05), in an aqueous two-phase polymer system (ATPPS) and also in an aqueous two-phase micellar system (ATPMS). The results showed that both systems are favorable for extraction the 5CN05 drug high partition coefficient values (K-5CN05 > 200) and yield (Y-5CN05 > 99.48%) in the concentrated phase were achieved with the systems. However, the ATPPS generated a partition coefficient (K-5CN05) higher than the one obtained with ATPMS. The results suggest that both processes may be used for the extraction and concentration of molecules with hydrophobic characteristics, such as 5CN05. They also provide an optimal environment for the solubilization of such molecules, allowing for greater efficiency when purifying many classes of drugs. (C) 2014 Elsevier Ltd. All rights reserved.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore