33 research outputs found
PARP-1-Associated Pathological Processes: Inhibition by Natural Polyphenols
Poly (ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in processes of cell cycle regulation, DNA repair, transcription, and replication. Hyperactivity of PARP-1 induced by changes in cell homeostasis promotes development of chronic pathological processes leading to cell death during various metabolic disorders, cardiovascular and neurodegenerative diseases. In contrast, tumor growth is accompanied by a moderate activation of PARP-1 that supports survival of tumor cells due to enhancement of DNA lesion repair and resistance to therapy by DNA damaging agents. That is why PARP inhibitors (PARPi) are promising agents for the therapy of tumor and metabolic diseases. A PARPi family is rapidly growing partly due to natural polyphenols discovered among plant secondary metabolites. This review describes mechanisms of PARP-1 participation in the development of various pathologies, analyzes multiple PARP-dependent pathways of cell degeneration and death, and discusses representative plant polyphenols, which can inhibit PARP-1 directly or suppress unwanted PARP-dependent cellular processes
Bioengineered System for High Throughput Screening of Kv1 Ion Channel Blockers
Screening drug candidates for their affinity and selectivity for a certain binding site is a crucial step in developing targeted therapy. Here, we created a screening assay for receptor binding that can be easily scaled up and automated for the high throughput screening of Kv channel blockers. It is based on the expression of the KcsA-Kv1 hybrid channel tagged with a fluorescent protein in the E. coli membrane. In order to make this channel accessible for the soluble compounds, E. coli were transformed into spheroplasts by disruption of the cellular peptidoglycan envelope. The assay was evaluated using a hybrid KcsA-Kv1.3 potassium channel tagged with a red fluorescent protein (TagRFP). The binding of Kv1.3 channel blockers was measured by flow cytometry either by using their fluorescent conjugates or by determining the ability of unconjugated compounds to displace fluorescently labeled blockers with a known affinity. A fraction of the occupied receptor was calculated with a dedicated pipeline available as a Jupyter notebook. Measured binding constants for agitoxin-2, charybdotoxin and kaliotoxin were in firm agreement with the earlier published data. By using a mid-range flow cytometer with manual sample handling, we measured and analyzed up to ten titration curves (eight data points each) in one day. Finally, we considered possibilities for multiplexing, scaling and automation of the assay
Ratiometric Detection of Mercury (II) Ions in Living Cells Using Fluorescent Probe Based on Bis(styryl) Dye and Azadithia-15-Crown-5 Ether Receptor
Bis(styryl) dye 1 bearing N-phenylazadithia-15-crown-5 ether receptor has been evaluated as a ratiometric fluorescent chemosensor for mercury (II) ions in living cells. In aqueous solution, probe 1 selectively responds to the presence of Hg2+ via the changes in the emission intensity as well as in the emission band shape, which is a result of formation of the complex with 1:1 metal to ligand ratio (dissociation constant 0.56 ± 0.15 µM). The sensing mechanism is based on the interplay between the RET (resonance energy transfer) and ICT (intramolecular charge transfer) interactions occurring upon the UV/Vis (380 or 405 nm) photoexcitation of both styryl chromophores in probe 1. Bio-imaging studies revealed that the yellow (500–600 nm) to red (600–730 nm) fluorescence intensity ratio decreased from 4.4 ± 0.2 to 1.43 ± 0.10 when cells were exposed to increasing concentration of mercury (II) ions enabling ratiometric quantification of intracellular Hg2+ concentration in the 37 nM–1 μM range
Combining mKate2-Kv1.3 Channel and Atto488-Hongotoxin for the Studies of Peptide Pore Blockers on Living Eukaryotic Cells
The voltage-gated potassium Kv1.3 channel is an essential component of vital cellular processes which is also involved in the pathogenesis of some autoimmune, neuroinflammatory and oncological diseases. Pore blockers of the Kv1.3 channel are considered as potential drugs and are used to study Kv1 channels’ structure and functions. Screening and study of the blockers require the assessment of their ability to bind the channel. Expanding the variety of methods used for this, we report on the development of the fluorescent competitive binding assay for measuring affinities of pore blockers to Kv1.3 at the membrane of mammalian cells. The assay constituents are hongotoxin 1 conjugated with Atto488, fluorescent mKate2-tagged Kv1.3 channel, which was designed to improve membrane expression of the channel in mammalian cells, confocal microscopy, and a special protocol of image processing. The assay is implemented in the “mix and measure”, format and allows the screening of Kv1.3 blockers, such as peptide toxins, that bind to the extracellular vestibule of the K+-conducting pore, and analyzing their affinity
Fluorescent RET-Based Chemosensor Bearing 1,8-Naphthalimide and Styrylpyridine Chromophores for Ratiometric Detection of Hg<sup>2+</sup> and Its Bio-Application
Dyad compound NI-SP bearing 1,8-naphthalimide (NI) and styrylpyridine (SP) photoactive units, in which the N-phenylazadithia-15-crown-5 ether receptor is linked with the energy donor naphthalimide chromophore, has been evaluated as a ratiometric fluorescent chemosensor for mercury (II) ions in living cells. In an aqueous solution, NI-SP selectively responds to the presence of Hg2+ via the enhancement in the emission intensity of NI due to the inhibition of the photoinduced electron transfer from the receptor to the NI fragment. At the same time, the long wavelength fluorescence band of SP, arising as a result of resonance energy transfer from the excited NI unit, appears to be virtually unchanged upon Hg2+ binding. This allows self-calibration of the optical response. The observed spectral behavior is consistent with the formation of the (NI-SP)·Hg2+ complex (dissociation constant 0.13 ± 0.04 µM). Bio-imaging studies showed that the ratio of fluorescence intensity in the 440–510 nm spectral region to that in the 590–650 nm region increases from 1.1 to 2.8 when cells are exposed to an increasing concentration of mercury (II) ions, thus enabling the detection of intracellular Hg2+ ions and their quantitative analysis in the 0.04–1.65 μM concentration range
N-Terminal Tails of Histones H2A and H2B Differentially Affect Transcription by RNA Polymerase II In Vitro
Histone N-terminal tails and their post-translational modifications affect various biological processes, often in a context-specific manner; the underlying mechanisms are poorly studied. Here, the role of individual N-terminal tails of histones H2A/H2B during transcription through chromatin was analyzed in vitro. spFRET data suggest that the tail of histone H2B (but not of histone H2A) affects nucleosome stability. Accordingly, deletion of the H2B tail (amino acids 1–31, but not 1–26) causes a partial relief of the nucleosomal barrier to transcribing RNA polymerase II (Pol II), likely facilitating uncoiling of DNA from the histone octamer during transcription. Taken together, the data suggest that residues 27–31 of histone H2B stabilize DNA–histone interactions at the DNA region localized ~25 bp in the nucleosome and thus interfere with Pol II progression through the region localized 11–15 bp in the nucleosome. This function of histone H2B requires the presence of the histone H2A N-tail that mediates formation of nucleosome–nucleosome dimers; however, nucleosome dimerization per se plays only a minimal role during transcription. Histone chaperone FACT facilitates transcription through all analyzed nucleosome variants, suggesting that H2A/H2B tails minimally interact with FACT during transcription; therefore, an alternative FACT-interacting domain(s) is likely involved in this process
Membrane-Disrupting Activity of Cobra Cytotoxins Is Determined by Configuration of the N-Terminal Loop
In aqueous solutions, cobra cytotoxins (CTX), three-finger folded proteins, exhibit conformational equilibrium between conformers with either cis or trans peptide bonds in the N-terminal loop (loop-I). The equilibrium is shifted to the cis form in toxins with a pair of adjacent Pro residues in this loop. It is known that CTX with a single Pro residue in loop-I and a cis peptide bond do not interact with lipid membranes. Thus, if a cis peptide bond is present in loop-I, as in a Pro-Pro containing CTX, this should weaken its lipid interactions and likely cytotoxic activities. To test this, we have isolated seven CTX from Naja naja and N. haje cobra venoms. Antibacterial and cytotoxic activities of these CTX, as well as their capability to induce calcein leakage from phospholipid liposomes, were evaluated. We have found that CTX with a Pro-Pro peptide bond indeed exhibit attenuated membrane-perturbing activity in model membranes and lower cytotoxic/antibacterial activity compared to their counterparts with a single Pro residue in loop-I
Epigallocatechin Gallate Affects the Structure of Chromatosomes, Nucleosomes and Their Complexes with PARP1
The natural flavonoid epigallocatechin gallate has a wide range of biological activities, including being capable of binding to nucleic acids; however, the mechanisms of the interactions of epigallocatechin gallate with DNA organized in chromatin have not been systematically studied. In this work, the interactions of epigallocatechin gallate with chromatin in cells and with nucleosomes and chromatosomes in vitro were studied using fluorescent microscopy and single-particle Förster resonance energy transfer approaches, respectively. Epigallocatechin gallate effectively penetrates into the nuclei of living cells and binds to DNA there. The interaction of epigallocatechin gallate with nucleosomes in vitro induces a large-scale, reversible uncoiling of nucleosomal DNA that occurs without the dissociation of DNA or core histones at sub- and low-micromolar concentrations of epigallocatechin gallate. Epigallocatechin gallate does not reduce the catalytic activity of poly(ADP-ribose) polymerase 1, but causes the modulation of the structure of the enzyme–nucleosome complex. Epigallocatechin gallate significantly changes the structure of chromatosomes, but does not cause the dissociation of the linker histone. The reorganization of nucleosomes and chromatosomes through the use of epigallocatechin gallate could facilitate access to protein factors involved in DNA repair, replication and transcription to DNA and, thus, might contribute to the modulation of gene expression through the use of epigallocatechin gallate, which was reported earlier