3 research outputs found

    Slow positron beam at the JINR, Dubna

    No full text
    The Low Energy Positron Toroidal Accumulator (LEPTA) at the Joint Institute for Nuclear Research (JINR) proposed for generation of positronium in flight has been adopted for positron annihilation spectroscopy (PAS). The positron injector generates continuous slow positron beam with positron energy range between 50 eV and 35 keV. The radioactive 22Na isotope is used. In distinction to popular tungsten foil, here the solid neon is used as moderator. It allows to obtain the beam intensity of about 105 e+/s width energy spectrum characterized by full width at half maximum (FWHM) of 3.4 eV and a tail to lower energies of about 30 eV. The paper covers the characteristic of variable energy positron beam at the LEPTA facility: parameters, the rule of moderation, scheme of injector, and transportation of positrons into the sample chamber. Recent status of the project and its development in the field of PAS is discussed. As an example, the measurement of the positron diffusion length in pure iron is demonstrated

    Modeling and X-ray Analysis of Defect Nanoclusters Formation in B4C under Ion Irradiation

    Get PDF
    In the presented work, B4C was irradiated with xenon swift heavy ions at the energy of 167 MeV. The irradiation of the substrate was done at room temperature to a fluence of 3.83 × 1014 ion/cm2. The samples were then analyzed with the X-ray diffraction technique to study the structural modification, as it can probe the region of penetration of xenon atoms due to the low atomic number of the two elements involved in the material under study. The nano-cluster formation under ion irradiation was observed. Positron lifetime (PLT) calculations of the secondary point defects forming nanoclusters and introduced into the B4C substrate by hydrogen and helium implantation were also carried out with the Multigrid instead of the K-spAce (MIKA) simulation package. The X-ray diffraction results confirmed that the sample was B4C and it had a rhombohedral crystal structure. The X-ray diffraction indicated an increase in the lattice parameter due to the Swift heavy ion (SHI) irradiation. In B12-CCC, the difference between τ with the saturation of H or He in the defect is nearly 20 ps. Under the same conditions with B11C-CBC, there is approximately twice the value for the same deviation
    corecore