28 research outputs found

    Bond excitations in the pseudogap phase of the Hubbard Model

    Full text link
    Using the dynamical cluster approximation, we calculate the correlation functions associated with the nearest neighbor bond operator which measure the z component of the spin exchange in the two-dimensional Hubbard model with UU equal to the bandwidth. We find that in the pseudogap region, the local bond susceptibility diverges at T=0. This shows the existence of degenerate bond spin excitation and implies quantum criticality and bond order formation when long range correlations are considered. The strong correlation between excitations on parallel neighboring bonds suggests bond singlet dimerization. The suppression of divergence for n<≈0.78n< \approx 0.78 implies that tor these model parameters this is quantum critical point which separates the unconventional pseudogap region characterized by bond order from a conventional Fermi liquid.Comment: 5 pages, 5 figure

    The isotope effect in the Hubbard model with local phonons

    Full text link
    The isotope effect (IE) in the two-dimensional Hubbard model with Holstein phonons is studied using the dynamical cluster approximation with quantum Monte Carlo. At small electron-phonon (EP) coupling the IE is negligible. For larger EP coupling there is a large and positive IE on the superconducting temperature that decreases with increasing doping. A significant IE also appears in the low-energy density of states, kinetic energy and charge excitation spectrum. A negligible IE is found in the pseudogap and antiferromagnetic (AF) properties at small doping whereas the AF susceptibility at intermediate doping increases with decreasing phonon frequency ω0\omega_0. This IE stems from increased polaronic effects with decreasing ω0\omega_0. A larger IE at smaller doping occurs due to stronger polaronic effects determined by the interplay of the EP interaction with stronger AF correlations. The IE of the Hubbard-Holstein model exhibits many similarities with the IE measured in cuprate superconductors

    Pseudogap and antiferromagnetic correlations in the Hubbard model

    Full text link
    Using the dynamical cluster approximation and quantum monte carlo we calculate the single-particle spectra of the Hubbard model with next-nearest neighbor hopping t′t'. In the underdoped region, we find that the pseudogap along the zone diagonal in the electron doped systems is due to long range antiferromagnetic correlations. The physics in the proximity of (0,π)(0,\pi) is dramatically influenced by t′t' and determined by the short range correlations. The effect of t′t' on the low energy ARPES spectra is weak except close to the zone edge. The short range correlations are sufficient to yield a pseudogap signal in the magnetic susceptibility, produce a concomitant gap in the single-particle spectra near (π,π/2)(\pi,\pi/2) but not necessarily at a location in the proximity of Fermi surface.Comment: 5 pages, 4 figure
    corecore