11,447 research outputs found
Global existence and full regularity of the Boltzmann equation without angular cutoff
We prove the global existence and uniqueness of classical solutions around an
equilibrium to the Boltzmann equation without angular cutoff in some Sobolev
spaces. In addition, the solutions thus obtained are shown to be non-negative
and in all variables for any positive time. In this paper, we study
the Maxwellian molecule type collision operator with mild singularity. One of
the key observations is the introduction of a new important norm related to the
singular behavior of the cross section in the collision operator. This norm
captures the essential properties of the singularity and yields precisely the
dissipation of the linearized collision operator through the celebrated
H-theorem
Effect of Gravitational Lensing on Measurements of the Sunyaev-Zel'dovich Effect
The Sunyaev-Zel'dovich (SZ) effect of a cluster of galaxies is usually
measured after background radio sources are removed from the cluster field.
Gravitational lensing by the cluster potential leads to a systematic deficit in
the residual intensity of unresolved sources behind the cluster core relative
to a control field far from the cluster center. As a result, the measured
decrement in the Rayleigh-Jeans temperature of the cosmic microwave background
is overestimated. We calculate the associated systematic bias which is
inevitably introduced into measurements of the Hubble constant using the SZ
effect. For the cluster A2218, we find that observations at 15 GHz with a beam
radius of 0'.4 and a source removal threshold of 100 microJy underestimate the
Hubble constant by 6-10%. If the profile of the gas pressure declines more
steeply with radius than that of the dark matter density, then the ratio of
lensing to SZ decrements increases towards the outer part of the cluster.Comment: 11 pages, 3 figures, submitted to ApJ
Rapid and MR-Independent IK1 activation by aldosterone during ischemia-reperfusion
In ST elevation myocardial infarction (STEMI) context, clinical studies have shown the deleterious
effect of high aldosterone levels on ventricular arrhythmia occurrence and cardiac
mortality. Previous in vitro reports showed that during ischemia-reperfusion, aldosterone
modulates K+ currents involved in the holding of the resting membrane potential (RMP).
The aim of this study was to assess the electrophysiological impact of aldosterone on IK1
current during myocardial ischemia-reperfusion. We used an in vitro model of âborder zoneâ
using right rabbit ventricle and standard microelectrode technique followed by cell-attached
recordings from freshly isolated rabbit ventricular cardiomyocytes. In microelectrode experiments,
aldosterone (10 and 100 nmol/L, n=7 respectively) increased the action potential
duration (APD) dispersion at 90% between ischemic and normoxic zones (from 95±4ms to
116±6 ms and 127±5 ms respectively, P<0.05) and reperfusion-induced sustained premature
ventricular contractions occurrence (from 2/12 to 5/7 preparations, P<0.05). Conversely,
potassium canrenoate 100 nmol/L and RU 28318 1 ÎŒmol/l alone did not affect AP
parameters and premature ventricular contractions occurrence (except Vmax which was
decreased by potassium canrenoate during simulated-ischemia). Furthermore, aldosterone
induced a RMP hyperpolarization, evoking an implication of a K+ current involved in the
holding of the RMP. Cell-attached recordings showed that aldosterone 10 nmol/L quickly
activated (within 6.2±0.4 min) a 30 pS K+-selective current, inward rectifier, with pharmacological
and biophysical properties consistent with the IK1 current (NPo =1.9±0.4 in control vs
NPo=3.0±0.4, n=10, P<0.05). These deleterious effects persisted in presence of RU 28318,
a specific MR antagonist, and were successfully prevented by potassium canrenoate, a non
specific MR antagonist, in both microelectrode and patch-clamp recordings, thus indicating
a MR-independent IK1 activation. In this ischemia-reperfusion context, aldosterone induced
rapid and MR-independent deleterious effects including an arrhythmia substrate (increased
APD90 dispersion) and triggered activities (increased premature ventricular contractions
occurrence on reperfusion) possibly related to direct IK1 activation
A family of graded epistemic logics
Multi-Agent Epistemic Logic has been investigated in Computer Science [Fagin, R., J. Halpern, Y. Moses and M. Vardi, âReasoning about Knowledge,â MIT Press, USA, 1995] to represent and reason about agents or groups of agents knowledge and beliefs. Some extensions aimed to reasoning about knowledge and probabilities [Fagin, R. and J. Halpern, Reasoning about knowledge and probability, Journal of the ACM 41 (1994), pp. 340â367] and also with a fuzzy semantics have been proposed [Fitting, M., Many-valued modal logics, Fundam. Inform. 15 (1991), pp. 235â254; Maruyama, Y., Reasoning about fuzzy belief and common belief: With emphasis on incomparable beliefs, in: IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16â22, 2011, 2011, pp. 1008â1013]. This paper introduces a parametric method to build graded epistemic logics inspired in the systematic method to build Multi-valued Dynamic Logics introduced in [Madeira, A., R. Neves and M. A. Martins, An exercise on the generation of many-valued dynamic logics, J. Log. Algebr. Meth. Program. 85 (2016), pp. 1011â1037. URL http://dx.doi.org/10.1016/j.jlamp.2016.03.004; Madeira, A., R. Neves, M. A. Martins and L. S. Barbosa, A dynamic logic for every season, in: C. Braga and N. MartĂ-Oliet, editors, Formal Methods: Foundations and Applications â 17th Brazilian Symposium, SBMF 2014, MaceiĂł, AL, Brazil, September 29-October 1, 2014. Proceedings, Lecture Notes in Computer Science 8941 (2014), pp. 130â145. URL http://dx.doi.org/10.1007/978-3-319-15075-8_9]. The parameter in both methods is the same: an action lattice [Kozen, D., On action algebras, Logic and Information Flow (1994), pp. 78â88]. This algebraic structure supports a generic space of agent knowledge operators, as choice, composition and closure (as a Kleene algebra), but also a proper truth space for possible non bivalent interpretation of the assertions (as a residuated lattice).publishe
Radial Age and Metal Abundance Gradients in the Stellar Content of M32
We present long-slit spectroscopy of the elliptical galaxy M32, obtained with
the 8-m Subaru telescope at Mauna Kea, the 1.5-m Tillinghast telescope at the
F. L. Whipple Observatory, and the 4-m Mayall telescope at the Kitt Peak
National Observatory. The spectra cover the Lick index red spectral region as
well as higher order Balmer lines in the blue. Spectra have been taken with the
slit off-set from the nucleus to avoid scattered light contamination from the
bright nucleus of M32. An analysis of numerous absorption features,
particularly involving the H and H Balmer lines, reveals that
systematic radial trends are evident in the integrated spectrum of M32.
Population synthesis models indicate a radial change in both the age and
chemical composition of the light-weighted mean stellar population in M32, from
the nucleus out to 33", i.e., approximately 1.0 effective radius, R_e.
Specifically, the light-weighted mean stellar population at 1 R_e is older, by
\~3 Gyr, and more metal-poor, by ~-0.25 dex in [Fe/H], t han the central value
of ~4 Gyr and [Fe/H]~0.0. We show that this apparent population trend cannot be
attributed to a varying contribution from either hot stars or emission line
contamination. The increase in age and decrease in metal-abundance with radius
are sufficiently well-matched to explain the flat radial color profiles
previously observed in M32. In addition, the ratio of Mg to Fe abundance,
[Mg/Fe], increases from ~-0.25 in the nucleus to ~-0.08 at 1 R_e. Finally, we
find spuriously pronounced line strength gradients in the Mayall data that are
an artifact of scattered light from the bright nucleus. Scattered light issues
may explain the lack of consistency among previously published studies of
radial line strength gradients in M32.Comment: 25 pages, 14 figures, 3 tables, accepted for publication in the
Astronomical Journa
Topological Line Defects around Graphene Nanopores for DNA Sequencing
Topological line defects in graphene represent an ideal way to produce highly
controlled structures with reduced dimensionality that can be used in
electronic devices. In this work we propose using extended line defects in
graphene to improve nucleobase selectivity in nanopore-based DNA sequencing
devices. We use a combination of QM/MM and non-equilibrium Green's functions
methods to investigate the conductance modulation, fully accounting for solvent
effects. By sampling over a large number of different orientations generated
from molecular dynamics simulations, we theoretically demonstrate that
distinguishing between the four nucleobases using line defects in a
graphene-based electronic device appears possible. The changes in conductance
are associated with transport across specific molecular states near the Fermi
level and their coupling to the pore. Through the application of a specifically
tuned gate voltage, such a device would be able to discriminate the four types
of nucleobases more reliably than that of graphene sensors without topological
line defects.Comment: 6 figures and 6 page
Period-doubling bifurcations and islets of stability in two-degree-of-freedom Hamiltonian systems
In this paper, we show that the destruction of the main KAM islands in
two-degree-of-freedom Hamiltonian systems occurs through a cascade of
period-doubling bifurcations. We calculate the corresponding Feigenbaum
constant and the accumulation point of the period-doubling sequence. By means
of a systematic grid search on exit basin diagrams, we find the existence of
numerous very small KAM islands ('islets') for values below and above the
aforementioned accumulation point. We study the bifurcations involving the
formation of islets and we classify them in three different types. Finally, we
show that the same types of islets appear in generic two-degree-of-freedom
Hamiltonian systems and in area-preserving maps
High-Cycle Fatigue Behaviour of Polyetheretherketone (PEEK) Produced by Additive Manufacturing
Publisher Copyright:
© 2023 by the authors.Polyetheretherketone (PEEK) is the leading high-performance thermoplastic biomaterial that can be processed through material extrusion (ME) additive manufacturing (AM), also known as three-dimensional (3D) printing, for patient-specific load-bearing implant manufacture. Considering the importance of cyclic loading for load-bearing implant design, this work addresses the high-cycle fatigue behaviour of 3D-printed PEEK. In this work, printed PEEK specimens are cyclically loaded under stress-controlled tensionâtension using different stress levels between 75% and 95% of printed PEEKâs tensile strength. The experimental results are used to document 3D-printed PEEKâs fatigue behaviour using Basquinâs power law, which was compared with previous fatigue research on bulk PEEK and other 3D-printing materials. As a pioneering study on its fatigue behaviour, the results from this work show that 3D-printed PEEK exhibits an above-average fatigue strength of 65 MPa, corresponding to about 75% of its tensile strength. Fracture surface analysis suggests that a transition can occur from ductile to brittle fracture with maximum stresses between 85% and 95% of the tensile strength. Evidence of crack propagation features on fracture surfaces under scanning electron microscope (SEM) observation suggests crack initiation in void defects created by printing deposition that propagates longitudinally through line bonding interfaces along layers. Considering this, 3D-printed PEEKâs fatigue behaviour can be strongly related to printing conditions. Further research on the fatigue behaviour of 3D-printed PEEK is necessary to support its use in load-bearing implant applications.publishersversionpublishe
Recommended from our members
First-in-Human Phase I Study to Evaluate the Brain-Penetrant PI3K/mTOR Inhibitor GDC-0084 in Patients with Progressive or Recurrent High-Grade Glioma.
PurposeGDC-0084 is an oral, brain-penetrant small-molecule inhibitor of PI3K and mTOR. A first-in-human, phase I study was conducted in patients with recurrent high-grade glioma.Patients and methodsGDC-0084 was administered orally, once daily, to evaluate safety, pharmacokinetics (PK), and activity. Fluorodeoxyglucose-PET (FDG-PET) was performed to measure metabolic responses.ResultsForty-seven heavily pretreated patients enrolled in eight cohorts (2-65 mg). Dose-limiting toxicities included 1 case of grade 2 bradycardia and grade 3 myocardial ischemia (15 mg), grade 3 stomatitis (45 mg), and 2 cases of grade 3 mucosal inflammation (65 mg); the MTD was 45 mg/day. GDC-0084 demonstrated linear and dose-proportional PK, with a half-life (âŒ19 hours) supportive of once-daily dosing. At 45 mg/day, steady-state concentrations exceeded preclinical target concentrations producing antitumor activity in xenograft models. FDG-PET in 7 of 27 patients (26%) showed metabolic partial response. At doses â„45 mg/day, a trend toward decreased median standardized uptake value in normal brain was observed, suggesting central nervous system penetration of drug. In two resection specimens, GDC-0084 was detected at similar levels in tumor and brain tissue, with a brain tissue/tumor-to-plasma ratio of >1 and >0.5 for total and free drug, respectively. Best overall response was stable disease in 19 patients (40%) and progressive disease in 26 patients (55%); 2 patients (4%) were nonevaluable.ConclusionsGDC-0084 demonstrated classic PI3K/mTOR-inhibitor related toxicities. FDG-PET and concentration data from brain tumor tissue suggest that GDC-0084 crossed the blood-brain barrier
- âŠ