150 research outputs found

    PifPaf: Composite Fields for Human Pose Estimation

    Get PDF
    We propose a new bottom-up method for multi-person 2D human pose estimation that is particularly well suited for urban mobility such as self-driving cars and delivery robots. The new method, PifPaf, uses a Part Intensity Field (PIF) to localize body parts and a Part Association Field (PAF) to associate body parts with each other to form full human poses. Our method outperforms previous methods at low resolution and in crowded, cluttered and occluded scenes thanks to (i) our new composite field PAF encoding fine-grained information and (ii) the choice of Laplace loss for regressions which incorporates a notion of uncertainty. Our architecture is based on a fully convolutional, single-shot, box-free design. We perform on par with the existing state-of-the-art bottom-up method on the standard COCO keypoint task and produce state-of-the-art results on a modified COCO keypoint task for the transportation domain.Comment: CVPR 201

    Recurrent Attention Models for Depth-Based Person Identification

    Get PDF
    We present an attention-based model that reasons on human body shape and motion dynamics to identify individuals in the absence of RGB information, hence in the dark. Our approach leverages unique 4D spatio-temporal signatures to address the identification problem across days. Formulated as a reinforcement learning task, our model is based on a combination of convolutional and recurrent neural networks with the goal of identifying small, discriminative regions indicative of human identity. We demonstrate that our model produces state-of-the-art results on several published datasets given only depth images. We further study the robustness of our model towards viewpoint, appearance, and volumetric changes. Finally, we share insights gleaned from interpretable 2D, 3D, and 4D visualizations of our model's spatio-temporal attention.Comment: Computer Vision and Pattern Recognition (CVPR) 201

    Co-Supervised Learning: Improving Weak-to-Strong Generalization with Hierarchical Mixture of Experts

    Full text link
    Steering the behavior of a strong model pre-trained on internet-scale data can be difficult due to the scarcity of competent supervisors. Recent studies reveal that, despite supervisory noises, a strong student model may surpass its weak teacher when fine-tuned on specific objectives. Yet, the effectiveness of such weak-to-strong generalization remains limited, especially in the presence of large capability gaps. In this paper, we propose to address this challenge by harnessing a diverse set of specialized teachers, instead of a single generalist one, that collectively supervises the strong student. Our approach resembles the classical hierarchical mixture of experts, with two components tailored for co-supervision: (i) we progressively alternate student training and teacher assignment, leveraging the growth of the strong student to identify plausible supervisions; (ii) we conservatively enforce teacher-student and local-global consistency, leveraging their dependencies to reject potential annotation noises. We validate the proposed method through visual recognition tasks on the OpenAI weak-to-strong benchmark and additional multi-domain datasets. Our code is available at \url{https://github.com/yuejiangliu/csl}.Comment: Preprin

    Characterizing and Improving Stability in Neural Style Transfer

    Get PDF
    Recent progress in style transfer on images has focused on improving the quality of stylized images and speed of methods. However, real-time methods are highly unstable resulting in visible flickering when applied to videos. In this work we characterize the instability of these methods by examining the solution set of the style transfer objective. We show that the trace of the Gram matrix representing style is inversely related to the stability of the method. Then, we present a recurrent convolutional network for real-time video style transfer which incorporates a temporal consistency loss and overcomes the instability of prior methods. Our networks can be applied at any resolution, do not re- quire optical flow at test time, and produce high quality, temporally consistent stylized videos in real-time

    Social Scene Understanding: End-to-End Multi-Person Action Localization and Collective Activity Recognition

    Get PDF
    We present a unified framework for understanding human social behaviors in raw image sequences. Our model jointly detects multiple individuals, infers their social actions, and estimates the collective actions with a single feed-forward pass through a neural network. We propose a single architecture that does not rely on external detection algorithms but rather is trained end-to-end to generate dense proposal maps that are refined via a novel inference scheme. The temporal consistency is handled via a person-level matching Recurrent Neural Network. The complete model takes as input a sequence of frames and outputs detections along with the estimates of individual actions and collective activities. We demonstrate state-of-the-art performance of our algorithm on multiple publicly available benchmarks
    • …
    corecore