3 research outputs found

    Antimicrobial Features of Organic Functionalized Graphene-Oxide with Selected Amines

    No full text
    (1) Background: Graphene oxide is a new carbon-based material that contains functional groups (carboxyl, hydroxyl, carbonyl, epoxy) and therefore can be easily functionalized with organic compounds of interest, yielding hybrid materials with important properties and applications. (2) Methods: Graphene oxide has been obtained by a modified Hummers method and activated by thionyl chloride in order to be covalently functionalized with amines. Thus obtained hybrid materials were characterized by infrared and Raman spectroscopy, elemental analysis and scanning electron microscopy and then tested for their antimicrobial and anti-biofilm activity. (3) Results: Eight amines of interest were used to functionalize grapheme oxide and the materials thus obtained were tested against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacterial strainsin plankonic and biofilm growth state. Both amines, as well as the functionalized materials, exhibited anti-microbial features. Three to five functionalized graphene oxide materials exhibited improved inhibitory activity against planktonic strains as compared with the respective amines. In exchange, the amines alone proved generally more efficient against biofilm-embedded cells. (4) Conclusions: Such hybrid materials may have a wide range of potential use in biomedical applications

    Design, Synthesis and In Vitro Characterization of Novel Antimicrobial Agents Based on 6-Chloro-9H-carbazol Derivatives and 1,3,4-Oxadiazole Scaffolds

    No full text
    In this paper, we aimed to exploit and combine in the same molecule the carbazole and the 1,3,4-oxadiazole pharmacophores, to obtain novel carprofen derivatives, by using two synthesis pathways. For the first route, the following steps have been followed: (i) (RS)-2-(6-chloro-9H-carbazol-2-yl)propanonic acid (carprofen) treatment with methanol, yielding methyl (RS)-2-(6-chloro-9H-carbazol-2-yl)propanoate; (ii) the resulted methylic ester was converted to (RS)-2-(6-chloro-9H-carbazol-2-yl)propane hydrazide (carprofen hydrazide) by treatment with hydrazine hydrate; (iii) reaction of the hydrazide derivative with acyl chlorides led to N-[(2RS)-2-(6-chloro-9H-carbazol-2-yl)propanoil]-N′-R-substituted-benzoylhydrazine formation, which; (iv) in reaction with phosphorus oxychloride gave the (RS)-1-(6-chloro-9H-carbazol-2-yl)-1-(1,3,4-oxadiazol-2-yl)ethane derivatives. In the second synthesis pathway, new 1,3,4-oxadiazole ring compounds were obtained starting from carprofen which was reacted with isoniazid, in the presence of phosphorus oxychloride to form (RS)-1-(6-chloro-9H-carbazol-2-yl)-1-[5-(4-pyridyl)-1,3,4-oxadiazol-2-yl]ethane. The synthesized compounds were characterized by IR, 1H-NMR and 13C-NMR, screened for their drug-like properties and evaluated for in vitro cytotoxicity and antimicrobial activity. The obtained compounds exhibited a good antimicrobial activity, some of the compounds being particularly active on E. coli, while others on C. albicans. The most significant result is represented by their exceptional anti-biofilm activity, particularly against the P. aeruginosa biofilm. The cytotoxicity assay revealed that at concentrations lower than 100 μg/mL, the tested compounds do not induce cytotoxicity and do not alter the mammalian cell cycle. The new synthesized compounds show good drug-like properties. The ADME-Tox profiles indicate a good oral absorption and average permeability through the blood brain barrier. However, further research is needed to reduce the predicted mutagenic potential and the hepatotoxicity
    corecore