103 research outputs found

    High Temperature Expansion for Frustrated and Unfrustrated S=1/2 Spin Chains

    Full text link
    A computer aided high temperature expansion of the magnetic susceptibility and the magnetic specific heat is presented and demonstrated for frustrated and unfrustrated spin chains. The results are analytic in nature since the calculations are performed in the integer domain. They are provided in the form of polynomials allowing quick and easy fits. Various representations of the results are discussed. Combining high temperature expansion coefficients and dispersion data yields very good agreement already in low order of the expansion which makes this approach very promising for the application to other problems, for instance in higher dimensions.Comment: 13 pages, 8 figures, to appear in Eur. Phys. J. B, minor corrections, correction of a[5] in table A.1.a, discussion of the region of validity added, coefficients available electronically: http://www.thp.uni-koeln.de/~g

    Effective Spin Models for Spin-Phonon Chains by Flow Equations

    Get PDF
    We investigate the anti-adiabatic limit of an anti-ferromagnetic S=1/2 Heisenberg chain coupled to Einstein phonons. The flow equation method is used to decouple the spin and the phonon part of the Hamiltonian. In the effective spin model long range spin-spin interactions are generated. We determine the phase transition from a gapless state to a gapped (dimerised) phase, which occurs at a non-zero value of the spin-phonon coupling. In the effective phonon sector a phonon hardening is observed.Comment: RevTeX, 6 pages, 4 eps figures; final version containing some clarification

    The term structure of illiquidity premia

    Get PDF
    This paper investigates the dynamics of the term structure of bond market illiquidity premia using data on German bond market segments which differ only with respect to their liquidity. We analyze the interaction between different parts of the term structure and identify economic factors that drive the illiquidity premia. We obtain three main results: (i) The term structure of illiquidity premia is U-shaped on average but its shape varies over time. (ii) There is a strict separation between the short end and the long end of the term structure of illiquidity premia, i.e. we find no evidence for spill-over effects across different maturities. Different economic factors drive different parts of the term structure. The short end is mainly driven by asset market volatilities which suggests a fight-to-liquidity effect. In contrast, the long end depends on long-term business cycle economic prospects. This suggests that different parts of the term structure are determined by different investor clienteles with different liquidity needs. (iii) There is a smooth transition from short-term to long-term illiquidity premia. The longer the time to maturity of a bond, the less important market volatilities are and the more important long-term economic prospects become. --bond liquidity,term structure of illiquidity premia

    Understanding the dynamics of randomly positioned dipolar spin ensembles

    Get PDF
    Dipolar spin ensembles with random spin positions are attracting much attention because they help us to understand decoherence as it occurs in solid-state quantum bits in contact with spin baths. Also, these ensembles are systems which may show many-body localization, at least in the sense of very slow spin dynamics. We present measurements of the autocorrelations of spins on diamond surfaces at infinite temperature in a doubly rotating frame which eliminates local disorder. Strikingly, the timescales in the longitudinal and the transversal channel differ by more than one order of magnitude, which is a factor much greater than one would have expected from simulations of spins on lattices. A previously developed dynamic mean-field theory for spins (spinDMFT) fails to explain this phenomenon. Thus, we improve it by extending it to clusters (CspinDMFT). This theory does capture the striking mismatch up to two orders of magnitude for random ensembles. Without positional disorder, however, the mismatch is only moderate with a factor below 4. The pivotal role of positional disorder suggests that the strong mismatch is linked to precursors of many-body localization

    The spin-Peierls chain revisited

    Full text link
    We extend previous analytical studies of the ground-state phase diagram of a one-dimensional Heisenberg spin chain coupled to optical phonons, which for increasing spin-lattice coupling undergoes a quantum phase transition from a gap-less to a gaped phase with finite lattice dimerisation. We check the analytical results against established four-block and new two-block density matrix renormalisation group (DMRG) calculations. Different finite-size scaling behaviour of the spin excitation gaps is found in the adiabatic and anti-adiabatic regimes.Comment: 2 pages, 1 figure, submitted to ICM 200

    Thermodynamic Properties of the Dimerised and Frustrated S=1/2 Chain

    Full text link
    By high temperature series expansion, exact diagonalisation and temperature density-matrix renormalisation the magnetic susceptibility χ(T)\chi(T) and the specific heat C(T)C(T) of dimerised and frustrated S=1/2S=1/2 chains are computed. All three methods yield reliable results, in particular for not too small temperatures or not too small gaps. The series expansion results are provided in the form of polynomials allowing very fast and convenient fits in data analysis using algebraic programmes. We discuss the difficulty to extract more than two coupling constants from the temperature dependence of χ(T)\chi(T).Comment: 14 pages, 13 figures, 4 table

    Systematic Mapping of the Hubbard Model to the Generalized t-J Model

    Full text link
    The generalized t-J model conserving the number of double occupancies is constructed from the Hubbard model at and in the vicinity of half-filling at strong coupling. The construction is realized by a self-similar continuous unitary transformation. The flow equation is closed by a truncation scheme based on the spatial range of processes. We analyze the conditions under which the t-J model can be set up and we find that it can only be defined for sufficiently large interaction. There, the parameters of the effective model are determined.Comment: 16 pages, 13 figures included. v2: Order of sections changed. Calculation and discussion of apparent gap in Section IV.A correcte

    Preparing for patients with high-consequence infectious diseases: Example of a high-level isolation unit

    Get PDF
    Introduction: Patients with high-consequence infectious diseases (HCID) are rare in Western Europe. However, high-level isolation units (HLIU) must always be prepared for patient admission. Case fatality rates of HCID can be reduced by providing optimal intensive care management. We here describe a single centre’s preparation, its embedding in the national context and the challenges we faced during the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Methods: Ten team leaders organize monthly whole day trainings for a team of doctors and nurses from the HLIU focusing on intensive care medicine. Impact and relevance of training are assessed by a questionnaire and a perception survey, respectively. Furthermore, yearly exercises with several partner institutions are performed to cover different real-life scenarios. Exercises are evaluated by internal and external observers. Both training sessions and exercises are accompanied by intense feedback. Results: From May 2017 monthly training sessions were held with a two-month and a seven-month break due to the first and second wave of the SARS-CoV-2 pandemic, respectively. Agreement with the statements of the questionnaire was higher after training compared to before training indicating a positive effect of training sessions on competence. Participants rated joint trainings for nurses and doctors at regular intervals as important. Numerous issues with potential for improvement were identified during post processing of exercises. Action plans for their improvement were drafted and as of now mostly implemented. The network of the permanent working group of competence and treatment centres for HCID (Ständiger Arbeitskreis der Kompetenz- und Behandlungszentren für Krankheiten durch hochpathogene Erreger (STAKOB)) at the Robert Koch-Institute (RKI) was strengthened throughout the SARS-CoV-2 pandemic. Discussion: Adequate preparation for the admission of patients with HCID is challenging. We show that joint regular trainings of doctors and nurses are appreciated and that training sessions may improve perceived skills. We also show that real-life scenario exercises may reveal additional deficits, which cannot be easily disclosed in training sessions. Although the SARS-CoV-2 pandemic interfered with our activities the enhanced cooperation among German HLIU during the pandemic ensured constant readiness for the admission of HCID patients to our or to collaborating HLIU. This is a single centre’s experience, which may not be generalized to other centres. However, we believe that our work may address aspects that should be considered when preparing a unit for the admission of patients with HCID. These may then be adapted to the local situations.Peer Reviewe

    Parallel analysis of arabidopsis circadian clock mutants reveals different scales of transcriptome and proteome regulation

    Get PDF
    The circadian clock regulates physiological processes central to growth and survival. To date, most plant circadian clock studies have relied on diurnal transcriptome changes to elucidate molecular connections between the circadian clock and observable phenotypes in wild-type plants. Here, we have integrated RNA-sequencing and protein mass spectrometry data to comparatively analyse the lhycca1, prr7prr9, gi and toc1 circadian clock mutant rosette at the end of day and end of night. Each mutant affects specific sets of genes and proteins, suggesting that the circadian clock regulation is modular. Furthermore, each circadian clock mutant maintains its own dynamically fluctuating transcriptome and proteome profile specific to subcellular compartments. Most of the measured protein levels do not correlate with changes in their corresponding transcripts. Transcripts and proteins that have coordinated changes in abundance are enriched for carbohydrate- and cold-responsive genes. Transcriptome changes in all four circadian clock mutants also affect genes encoding starch degradation enzymes, transcription factors and protein kinases. The comprehensive transcriptome and proteome datasets demonstrate that future system-driven research of the circadian clock requires multi-level experimental approaches. Our work also shows that further work is needed to elucidate the roles of post-translational modifications and protein degradation in the regulation of clock-related processesResearch was supported by the European Commission (FP7 collaborative project TiMet, contract 245143)
    • …
    corecore