71 research outputs found

    A gridded monthly upper-air data set from 1918 to 1957

    Get PDF
    Significant efforts have been devoted in recent years towards extending observation-based three-dimensional atmospheric data sets back in time. Such data sets form an important basis for a better understanding of the climate system. Here we present a new monthly three-dimensional global data set that is based on historical upper-air data and surface data. We use statistical reconstruction techniques, calibrated using ERA-40 data, to obtain gridded data from the numerous, but scattered and heterogeneous historical upper-air observations. In contrast to previous work, in which we used hemispheric principal components on both the predictor and the predictand side to reconstruct spatially complete fields back to 1880, we restrict the procedure to places and times where upper-air observations are available. Each grid column (consisting of four variables at six levels) is then reconstructed independently using only predictor variables in the vicinity (i.e., only local stationarity is required rather than stationary large-scale patterns). The product, termed REC2, is a gridded, global monthly data set of geopotential height, temperature, and u and v wind from 850 to 100hPa back to 1918. The data set is sparse (i.e., many grid cells are empty), but provides an alternative to large-scale reconstructions as it allows for non-stationary teleconnections. We show the results of several validation experiments, compare our new data set with a number of existing data sets, and demonstrate that it is suitable for analysing large-scale climate variability on interannual time-scale

    Synoptic Analysis of the New York March 1888 Blizzard

    Get PDF
    The meteorological circumstances that led to the Blizzard of March 1888 that hit New York are analysed in Version 2 of the “Twentieth Century Reanalysis” (20CR). The potential of this data set for studying historical extreme events has not yet been fully explored. A detailed analysis of 20CR data alongside other data sources (including historical instrumental data and weather maps) for historical extremes such as the March 1888 blizzard may give insights into the limitations of 20CR. We find that 20CR reproduces the circulation pattern as well as the temperature development very well. Regarding the absolute values of variables such as snow fall or minimum and maximum surface pressure, there is anunderestimation of the observed extremes, which may be due to the low spatial resolution of 20CR and the fact that only the ensemble mean is considered. Despite this drawback, the dataset allows us to gain new information due to its complete spatial and temporal coverage

    Historical weather extremes in the “Twentieth Century Reanalysis”

    Get PDF
    Meteorological or climatological extremes are rare and hence studying them requires long meteorological data sets. Moreover, for addressing the underlying atmospheric processes, detailed three-dimensional data are desired. Until recently the two requirements were incompatible as long meteorological series were only available for a few locations, whereas detailed 3-dimensional data sets such as reanalyses were limited to the past few decades. In 2011, the “Twentieth Century Reanalysis” (20CR) was released, a 6-hourly global atmospheric data set covering the past 140 years, thus combining the two properties. The collection of short papers in this volume contains case studies of individual extreme events in the 20CR data set. In this overview paper we introduce the first six cases and summarise some common findings. All of the events are represented in 20CR in a physically consistent way, allowing further meteorological interpretations and process studies. Also, for most of the events, the magnitudes are underestimated in the ensemble mean. Possible causes are addressed. For interpreting extrema it may be necessary to address individual ensemble members. Also, the density of observations underlying 20CR should be considered. Finally, we point to problems in wind speeds over the Arctic and the northern North Pacific in 20CR prior to the 1950s

    A multi-data set comparison of the vertical structure of temperature variability and change over the Arctic during the past 100years

    Get PDF
    We compare the daily, interannual, and decadal variability and trends in the thermal structure of the Arctic troposphere using eight observation-based, vertically resolved data sets, four of which have data prior to 1948. Comparisons on the daily scale between historical reanalysis data and historical upper-air observations were performed for Svalbard for the cold winters 1911/1912 and 1988/1989, the warm winters 1944/1945 and 2005/2006, and the International Geophysical Year 1957/1958. Excellent agreement is found at mid-tropospheric levels. Near the ground and at the tropopause level, however, systematic differences are identified. On the interannual time scale, the correlations between all data sets are high, but there are systematic biases in terms of absolute values as well as discrepancies in the magnitude of the variability. The causes of these differences are discussed. While none of the data sets individually may be suitable for trend analysis, consistent features can be identified from analyzing all data sets together. To illustrate this, we examine trends and 20-year averages for those regions and seasons that exhibit large sea-ice changes and have enough data for comparison. In the summertime Pacific Arctic and the autumn eastern Canadian Arctic, the lower tropospheric temperature anomalies for the recent two decades are higher than in any previous 20-year period. In contrast, mid-tropospheric temperatures of the European Arctic in the wintertime of the 1920s and 1930s may have reached values as high as those of the late 20th and early 21st centurie

    Clostridium difficile ribotypes in Austria: a multicenter, hospital-based survey

    Get PDF
    A prospective, noninterventional survey was conducted among Clostridium difficile positive patients identified in the time period of July until October 2012 in 18 hospitals distributed across all nine Austrian provinces. Participating hospitals were asked to send stool samples or isolates from ten successive patients with C.difficile infection to the National Clostridium difficile Reference Laboratory at the Austrian Agency for Health and Food Safety for PCR-ribotyping and in vitro susceptibility testing. A total of 171 eligible patients were identified, including 73 patients with toxin-positive stool specimens and 98 patients from which C. difficile isolates were provided. Of the 159 patients with known age, 127 (74.3 %) were 65 years or older, the median age was 76 years (range: 9–97 years), and the male to female ratio 2.2. Among these patients, 73 % had health care-associated and 20 % community-acquired C. difficile infection (indeterminable 7 %). The all-cause, 30-day mortality was 8.8 % (15/171). Stool samples yielded 46 different PCR-ribotypes, of which ribotypes 027 (20 %), 014 (15.8 %), 053 (10.5 %), 078 (5.3 %), and 002 (4.7 %) were the five most prevalent. Ribotype 027 was found only in the provinces Vienna, Burgenland, and Lower Austria. Severe outcome of C. difficile infection was found to be associated with ribotype 053 (prevalence ratio: 3.04; 95 % CI: 1.24, 7.44), not with the so-called hypervirulent ribotypes 027 and 078. All 027 and 053 isolates exhibited in vitro resistance against moxifloxacin. Fluoroquinolone use in the health care setting must be considered as a factor favoring the spread of these fluoroquinolone resistant C. difficile clones

    Multidecadal variations of the effects of the Quasi-Biennial Oscillation on the climate system

    Get PDF
    Effects of the Quasi-Biennial Oscillation (QBO) on tropospheric climate are not always strong or they appear only intermittently. Studying them requires long time series of both the QBO and climate variables, which has restricted previous studies to the past 30–50 years. Here we use the benefits of an existing QBO reconstruction back to 1908. We first investigate additional, newly digitized historical observations of stratospheric winds to test the reconstruction. Then we use the QBO time series to analyse atmospheric data sets (reconstructions and reanalyses) as well as the results of coupled ocean–atmosphere-chemistry climate model simulations that were forced with the reconstructed QBO. We investigate effects related to (1) tropical-extratropical interaction in the stratosphere, wave-mean flow interaction and subsequent downward propagation, and (2) interaction between deep tropical convection and stratospheric flow. We generally find weak connections, though some are statistically significant over the 100-year period and consistent with model results. Apparent multidecadal variations in the connection between the QBO and the investigated climate responses are consistent with a small effect in the presence of large variability, with one exception: the imprint on the northern polar vortex, which is seen in recent reanalysis data, is not found in the period 1908-1957. Conversely, an imprint in Berlin surface air temperature is only found in 1908-1957 but not in the recent period. Likewise, in the model simulations both links tend to appear alternatingly, suggesting a more systematic modulation due to a shift in the circulation, for example. Over the Pacific warm pool, we find increased convection during easterly QBO, mainly in boreal winter in observation-based data as well as in the model simulations, with large variability. No QBO effects were found in the Indian monsoon strength or Atlantic hurricane frequency

    <i>Performative reading in the late Byzantine</i> theatron

    Get PDF
    • 

    corecore