11 research outputs found

    Acetylcholinesterase (Ace-1) target site mutation 119S is strongly diagnostic of carbamate and organophosphate resistance in Anopheles gambiae s.s. and Anopheles coluzzii across southern Ghana.

    Get PDF
    BACKGROUND With high DDT resistance present throughout much of West Africa, carbamates and organophosphates are increasingly important alternatives to pyrethroids for indoor residual spraying (IRS). Though less widespread, resistance to both of these alternative insecticide classes has also been documented within the Anopheles gambiae species pair (formerly the M and S molecular forms) in West Africa. To manage insecticide efficacy, it is important to predict how and where resistance is likely to occur and spread, which could be aided by using molecular diagnostics with high predictive value. METHODS Anopheles coluzzii and An. gambiae s.s. were collected from 18 sites throughout southern Ghana and bioassayed with bendiocarb, the most commonly applied carbamate, and an organophosphate, fenitrothion. The Ace-1 target site substitution G119S was genotyped by qPCR. RESULTS Fenitrothion induced higher mortality than bendiocarb, though phenotypes correlated strongly across populations. Ace-1 119S was found at much higher frequency in An. gambiae s.s than An. coluzzii, exceeding 90 % in a population from Greater Accra, the highest frequency reported to date. Ace-1 G119S was very strongly associated with resistance to both insecticides, providing high predictive power for diagnosis, though with some evidence for a differential effect between molecular forms for bendiocarb. Sequencing of the gene revealed a lack of variation in resistant alleles precluding determination of origin, but Ace-1 copy number variation was detected for the first time in Ghana. CONCLUSIONS The results validate the utility of G119S as a useful diagnostic of organophosphate and carbamate resistance within and among populations, whilst highlighting the potential for an aggregate nature of Ace-1 genotypes, which may comprise both single-copy and duplicated genes. Further work is now required to determine the distribution and resistance-association of Ace-1 duplication

    Morphometric characterization of three Tsetse Fly Species - Glossina M. Morsitans, G. P. Palpalis and G. Tachinoides (Diptera: Glossinidae) from Ghana

    Full text link
    Tsetse flies (Diptera: Glossinidae) are the main vectors of Human African Trypanosomiasis (HAT), or sleeping sickness and Animal African Trypanosomiasis, (AAT) or Nagana in Sub Saharan Africa. In Ghana, whilst HAT is no longer a major public health issue, AAT is still widely reported and causes considerable losses in the livestock sector resulting in major impacts on agricultural production, livelihoods and food security in the country. Application of morphometric techniques can reveal the existing level of population differentiation in tsetse flies, providing guidance on the distribution of genetically defined subpopulations. Morphometric techniques were used to compare size and shape of three tsetse fly species- G. m. morsitans, G. p. palpalis and G. tachinoides of Ghana, and also compare populations of G. p. palpalis collected from three geographical regions (Northern, Eastern and Western) of Ghana. Flies were sampled from four sites in the Western, one site in the Eastern and three sites in the Northern Region using standard un-baited biconical traps. Right wings and right hind legs of selected flies from different collection sites were removed and mounted on microscope slides using glycerin as the mounting medium. Images of the prepared slides were captured under a Leica EZ4 D microscope with an inbuilt camera connected to a laptop. Linear and proportions of wing and hind tibia measurements were arcsine-root transformed before analyzing with a general linear model in analysis of variance (ANOVA). Multivariate statistical analyses were used to detect any possible variations. Results of the GLM analyses of linear and ratio data revealed that different linear combinations can be used to characterize tsetse species of different populations. The ratio value hind tibia/wing length (th/at) significantly distinguished fly populations into four groups, Northern, Eastern, Western and the lab colony; this is an indication that hind tibia/wing length is a good morphometric feature which can be used to discriminate flies from different regions of Ghana. The principal components and canonical variates as well as Mahalanobis squared distances confirmed linear and ratio separations. Therefore based on these differences in morphometric characters observed, the three tsetse species were distinguished from each other. Similar work on morphometrics needs to be done to include more regions and many other body parts such as proboscis length, antennal length, thorax and abdomen length and width in order to establish stronger morphometric tools for discriminating different tsetse fly species

    Pregnancy outcomes and associated characteristics at the expected date of delivery and beyond in a large tertiary hospital in Ghana

    Get PDF
    Background: Globally, pregnancies that have gone beyond the expected date of delivery (EDD) contribute significantly to maternal and perinatal morbidity and mortality.Objective: This study aimed to determine the proportion, pregnancy outcomes, and associated characteristics of deliveries at EDD and beyond at the Korle-Bu Teaching Hospital (KBTH) in Accra, Ghana.Methods: This was a cross-sectional study conducted at the KBTH. Postpartum women who delivered at a gestational age of 40 weeks and beyond were selected from the labour wards, grouped according to gestational age, and followed up to their first postnatal visit. Data were collected on demographic, obstetric and postpartum health status. The association between study variables and delivery at and beyond EDD was determined using the F-test statistic and Chi-square test for continuous and categorical outcomes, respectively. A p < 0.05 was considered statistically significant.Results: Of the 300 participants, 44% (n = 132) delivered at 40 weeks plus 0 to 6 days (40 + 0 - 6 weeks) of gestation, 44.7% (n = 134) at 41 + 0 - 6 weeks, and 11.3% (n = 34) at ≥ 42 weeks. The proportion of deliveries at EDD and beyond was 9.9% (n = 300/304) of total deliveries during the period. The pregnancies ≥ 42 weeks were 1.1% (n = 34/3041) of total deliveries. Factors that were significant associations with women who delivered at ≥ 42 + 0 weeks were a referral from other hospitals (p < 0.017), labour induction (p < 0.001), a longer first stage of labour (p < 0.008), and a longer total labour duration (p < 0.009).Conclusion: The proportion of deliveries in which the pregnancies had progressed to the EDD and beyond and that of prolonged pregnancy at the KBTH were 9.9% and 1.1%, respectively. The duration of the first stage of labour and the total duration of labour was longer in women with pregnancies ≥ 42 weeks

    Signatures of adaptation at key insecticide resistance loci in Anopheles gambiae in Southern Ghana revealed by reduced-coverage WGS

    Get PDF
    Resistance to insecticides and adaptation to a diverse range of environments present challenges to Anopheles gambiae s.l. mosquito control efforts in sub-Saharan Africa. Whole-genome-sequencing is often employed for identifying the genomic basis underlying adaptation in Anopheles, but remains expensive for large-scale surveys. Reduced coverage whole-genome-sequencing can identify regions of the genome involved in adaptation at a lower cost, but is currently untested in Anopheles mosquitoes. Here, we use reduced coverage WGS to investigate population genetic structure and identify signatures of local adaptation in Anopheles mosquitoes across southern Ghana. In contrast to previous analyses, we find no structuring by ecoregion, with Anopheles coluzzii and Anopheles gambiae populations largely displaying the hallmarks of large, unstructured populations. However, we find signatures of selection at insecticide resistance loci that appear ubiquitous across ecoregions in An. coluzzii, and strongest in forest ecoregions in An. gambiae. Our study highlights resistance candidate genes in this region, and validates reduced coverage WGS, potentially to very low coverage levels, for population genomics and exploratory surveys for adaptation in Anopheles taxa

    Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus

    Get PDF
    Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Côte d’Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions

    Field-Caught Permethrin-Resistant Anopheles gambiae Overexpress CYP6P3, a P450 That Metabolises Pyrethroids

    Get PDF
    Insects exposed to pesticides undergo strong natural selection and have developed various adaptive mechanisms to survive. Resistance to pyrethroid insecticides in the malaria vector Anopheles gambiae is receiving increasing attention because it threatens the sustainability of malaria vector control programs in sub-Saharan Africa. An understanding of the molecular mechanisms conferring pyrethroid resistance gives insight into the processes of evolution of adaptive traits and facilitates the development of simple monitoring tools and novel strategies to restore the efficacy of insecticides. For this purpose, it is essential to understand which mechanisms are important in wild mosquitoes. Here, our aim was to identify enzymes that may be important in metabolic resistance to pyrethroids by measuring gene expression for over 250 genes potentially involved in metabolic resistance in phenotyped individuals from a highly resistant, wild A. gambiae population from Ghana. A cytochrome P450, CYP6P3, was significantly overexpressed in the survivors, and we show that the translated enzyme metabolises both alpha-cyano and non–alpha-cyano pyrethroids. This is the first study to demonstrate the capacity of a P450 identified in wild A. gambiae to metabolise insecticides. The findings add to the understanding of the genetic basis of insecticide resistance in wild mosquito populations

    Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus

    Get PDF
    Publisher Copyright: © 2021 Grau-Bové et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Côte d’Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions.publishersversionpublishe

    Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus

    Get PDF
    Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Coˆte d’Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions

    Malaria in Africa: Vector Species' Niche Models and Relative Risk Maps

    Get PDF
    A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km). Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes). For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis) these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The “additive” model assumes no interaction; the “minimax” model assumes maximum relative risk due to any vector in a cell; and the “competitive exclusion” model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease

    Ecological Zones Rather Than Molecular Forms Predict Genetic Differentiation in the Malaria Vector Anopheles gambiae s.s. in Ghana

    No full text
    The malaria mosquito Anopheles gambiae s.s. is rapidly becoming a model for studies on the evolution of reproductive isolation. Debate has centered on the taxonomic status of two forms (denoted M and S) within the nominal taxon identified by point mutations in the X-linked rDNA region. Evidence is accumulating that there are significant barriers to gene flow between these forms, but that the barriers are not complete throughout the entire range of their distribution. We sampled populations from across Ghana and southern Burkina Faso, West Africa, from areas where the molecular forms occurred in both sympatry and allopatry. Neither Bayesian clustering methods nor F(ST)-based analysis of microsatellite data found differentiation between the M and S molecular forms, but revealed strong differentiation among different ecological zones, irrespective of M/S status and with no detectable effect of geographical distance. Although no M/S hybrids were found in the samples, admixture analysis detected evidence of contemporary interform gene flow, arguably most pronounced in southern Ghana where forms occur sympatrically. Thus, in the sampled area of West Africa, lack of differentiation between M and S forms likely reflects substantial introgression, and ecological barriers appear to be of greater importance in restricting gene flow
    corecore