2,518 research outputs found
Aqueous Humor Outflow Structure and Function Imaging At the Bench and Bedside: A Review.
Anterior segment glaucoma clinical care and research has recently gained new focus because of novel imaging modalities and the advent of angle-based surgical treatments. Traditional investigation drawn to the trabecular meshwork now emphasizes the entire conventional aqueous humor outflow (AHO) pathway from the anterior chamber to the episcleral vein. AHO investigation can be divided into structural and functional assessments using different methods. The historical basis for studying the anterior segment of the eye and AHO in glaucoma is discussed. Structural studies of AHO are reviewed and include traditional pathological approaches to modern tools such as multi-model two-photon microscopy and optical coherence tomography. Functional assessment focuses on visualizing AHO itself through a variety of non-real-time and real-time techniques such as aqueous angiography. Implications of distal outflow resistance and segmental AHO are discussed with an emphasis on melding bench-side research to viable clinical applications. Through the development of an improved structure: function relationship for AHO in the anterior segment of the normal and diseased eye, a better understanding of the eye with improved therapeutics may be developed
Recommended from our members
Giant Light-Emission Enhancement in Lead Halide Perovskites by Surface Oxygen Passivation.
Surface condition plays an important role in the optical performance of semiconductor materials. As new types of semiconductors, the emerging metal-halide perovskites are promising for next-generation optoelectronic devices. We discover significantly improved light-emission efficiencies in lead halide perovskites due to surface oxygen passivation. The enhancement manifests close to 3 orders of magnitude as the perovskite dimensions decrease to the nanoscale, improving external quantum efficiencies from <0.02% to over 12%. Along with about a 4-fold increase in spontaneous carrier recombination lifetimes, we show that oxygen exposure enhances light emission by reducing the nonradiative recombination channel. Supported by X-ray surface characterization and theoretical modeling, we propose that excess lead atoms on the perovskite surface create deep-level trap states that can be passivated by oxygen adsorption
Aqueous Angiography with Fluorescein and Indocyanine Green in Bovine Eyes.
PurposeWe characterize aqueous angiography as a real-time aqueous humor outflow imaging (AHO) modality in cow eyes with two tracers of different molecular characteristics.MethodsCow enucleated eyes (n = 31) were obtained and perfused with balanced salt solution via a Lewicky AC maintainer through a 1-mm side-port. Fluorescein (2.5%) or indocyanine green (ICG; 0.4%) were introduced intracamerally at 10 mm Hg individually or sequentially. With an angiographer, infrared and fluorescent images were acquired. Concurrent anterior segment optical coherence tomography (OCT) was performed, and fixable fluorescent dextrans were introduced into the eye for histologic analysis of angiographically positive and negative areas.ResultsAqueous angiography in cow eyes with fluorescein and ICG yielded high-quality images with segmental patterns. Over time, ICG maintained a better intraluminal presence. Angiographically positive, but not negative, areas demonstrated intrascleral lumens with anterior segment OCT. Aqueous angiography with fluorescent dextrans led to their trapping in AHO pathways. Sequential aqueous angiography with ICG followed by fluorescein in cow eyes demonstrated similar patterns.ConclusionsAqueous angiography in model cow eyes demonstrated segmental angiographic outflow patterns with either fluorescein or ICG as a tracer.Translational relevanceFurther characterization of segmental AHO with aqueous angiography may allow for intelligent placement of trabecular bypass minimally invasive glaucoma surgeries for improved surgical results
Pathways in Two-State Protein Folding
The thermodynamics of proteins indicate that folding/unfolding takes place
either through stable intermediates or through a two-state process without
intermediates. The rather short folding times of the two-state process indicate
that folding is guided. We reconcile these two seemingly contradictory
observations quantitatively in a schematic model of protein folding. We propose
a new dynamical transition temperature which is lower than the thermodynamic
one, in qualitative agreement with in vivo measurement of protein stability
using E.coli. Finally we demonstrate that our framework is easily generalized
to encompass cold unfolding, and make predictions that relate the sharpness of
the cold and hot unfolding transitions.Comment: 4 pages RevTeX, 5 Postscript figur
ELF3 controls thermoresponsive growth in Arabidopsis
Plant development is highly responsive to ambient temperature, and this trait has been linked to the ability of plants to adapt to climate change [1]. The mechanisms by which natural populations modulate their thermoresponsiveness are not known [2]. To address this, we surveyed Arabidopsis accessions for variation in thermal responsiveness of elongation growth and mapped the corresponding loci. We find that the transcriptional regulator EARLY FLOWERING3 (ELF3) controls elongation growth in response to temperature. Through a combination of modeling and experiments, we show that high temperature relieves the gating of growth at night, highlighting the importance of temperature-dependent repressors of growth. ELF3 gating of transcriptional targets responds rapidly and reversibly to changes in temperature. We show that the binding of ELF3 to target promoters is temperature dependent, suggesting a mechanism where temperature directly controls ELF3 activity
Spin-polarization-induced structural selectivity in Pd and Pt () compounds
Spin-polarization is known to lead to important {\it magnetic} and {\it
optical} effects in open-shell atoms and elemental solids, but has rarely been
implicated in controlling {\it structural} selectivity in compounds and alloys.
Here we show that spin-polarized electronic structure calculations are crucial
for predicting the correct crystal structures for Pd and Pt
compounds. Spin-polarization leads to (i) stabilization of the structure
over the structure in PtCr, PdCr, and PdMn, (ii) to the
stabilization of the structure over the structure in PdCo
and to (iii) ordering (rather than phase-separation) in PtCo and PdCr.
The results are analyzed in terms of first-principles local spin density
calculations.Comment: 4 pages, REVTEX, 3 eps figures, to appear in PR
Hybrid Integration of GaP Photonic Crystal Cavities with Silicon-Vacancy Centers in Diamond by Stamp-Transfer
Optically addressable solid-state defects are emerging as one of the most
promising qubit platforms for quantum networks. Maximizing photon-defect
interaction by nanophotonic cavity coupling is key to network efficiency. We
demonstrate fabrication of gallium phosphide 1-D photonic crystal waveguide
cavities on a silicon oxide carrier and subsequent integration with implanted
silicon-vacancy (SiV) centers in diamond using a stamp-transfer technique. The
stamping process avoids diamond etching and allows fine-tuning of the cavities
prior to integration. After transfer to diamond, we measure cavity quality
factors () of up to 8900 and perform resonant excitation of single SiV
centers coupled to these cavities. For a cavity with of 4100, we observe a
three-fold lifetime reduction on-resonance, corresponding to a maximum
potential cooperativity of . These results indicate promise for high
photon-defect interaction in a platform which avoids fabrication of the quantum
defect host crystal
- …