38,741 research outputs found

    A Genetic Programming Framework for Two Data Mining Tasks: Classification and Generalized Rule Induction

    Get PDF
    This paper proposes a genetic programming (GP) framework for two major data mining tasks, namely classification and generalized rule induction. The framework emphasizes the integration between a GP algorithm and relational database systems. In particular, the fitness of individuals is computed by submitting SQL queries to a (parallel) database server. Some advantages of this integration from a data mining viewpoint are scalability, data-privacy control and automatic parallelization

    A lexicographic multi-objective genetic algorithm for multi-label correlation-based feature selection

    Get PDF
    This paper proposes a new Lexicographic multi-objective Genetic Algorithm for Multi-Label Correlation-based Feature Selection (LexGA-ML-CFS), which is an extension of the previous single-objective Genetic Algorithm for Multi-label Correlation-based Feature Selection (GA-ML-CFS). This extension uses a LexGA as a global search method for generating candidate feature subsets. In our experiments, we compare the results obtained by LexGA-ML-CFS with the results obtained by the original hill climbing-based ML-CFS, the single-objective GA-ML-CFS and a baseline Binary Relevance method, using ML-kNN as the multi-label classifier. The results from our experiments show that LexGA-ML-CFS improved predictive accuracy, by comparison with other methods, in some cases, but in general there was no statistically significant different between the results of LexGA-ML-CFS and other methods

    A floor sensor system for gait recognition

    No full text
    This paper describes the development of a prototype floor sensor as a gait recognition system. This could eventually find deployment as a standalone system (eg. a burglar alarm system) or as part of a multimodal biometric system. The new sensor consists of 1536 individual sensors arranged in a 3 m by 0.5 m rectangular strip with an individual sensor area of 3 cm2. The sensor floor operates at a sample rate of 22 Hz. The sensor itself uses a simple design inspired by computer keyboards and is made from low cost, off the shelf materials. Application of the sensor floor to a small database of 15 individuals was performed. Three features were extracted : stride length, stride cadence, and time on toe to time on heel ratio. Two of these measures have been used in video based gait recognition while the third is new to this analysis. These features proved sufficient to achieve an 80 % recognition rate

    A Survey of Parallel Data Mining

    Get PDF
    With the fast, continuous increase in the number and size of databases, parallel data mining is a natural and cost-effective approach to tackle the problem of scalability in data mining. Recently there has been a considerable research on parallel data mining. However, most projects focus on the parallelization of a single kind of data mining algorithm/paradigm. This paper surveys parallel data mining with a broader perspective. More precisely, we discuss the parallelization of data mining algorithms of four knowledge discovery paradigms, namely rule induction, instance-based learning, genetic algorithms and neural networks. Using the lessons learned from this discussion, we also derive a set of heuristic principles for designing efficient parallel data mining algorithms

    Why Can’t a Family Business Be More Like a Nonfamily Business? Modes of Professionalization in Family Firms

    Get PDF
    The authors survey arguments that family firms should behave more like nonfamily firms and “professionalize.” Despite the apparent advantages of this transition, many family firms fail to do so or do so only partially. The authors reflect on why this might be so, and the range of possible modes of professionalization. They derive six ideal types: (a) minimally professional family firms; (b) wealth dispensing, private family firms; (c) entrepreneurially operated family firms; (d) entrepreneurial family business groups; (e) pseudoprofessional, public family firms; and (f) hybrid professional family firms. The authors conclude with suggestions for further research that is attentive to such variation
    • …
    corecore