142 research outputs found

    MISSEL: a method to identify a large number of small species-specific genomic subsequences and its application to viruses classification

    Get PDF
    Continuous improvements in next generation sequencing technologies led to ever-increasing collections of genomic sequences, which have not been easily characterized by biologists, and whose analysis requires huge computational effort. The classification of species emerged as one of the main applications of DNA analysis and has been addressed with several approaches, e.g., multiple alignments-, phylogenetic trees-, statistical- and character-based methods

    Chikungunya virus, epidemiology, clinics and phylogenesis: A review.

    Get PDF
    Abstract Chikungunya virus is a mosquito-transmitted alphavirus that causes chikungunya fever, a febrile illness associated with severe arthralgia and rash. Chikungunya virus is transmitted by culicine mosquitoes; Chikungunya virus replicates in the skin, disseminates to liver, muscle, joints, lymphoid tissue and brain, presumably through the blood. Phylogenetic studies showed that the Indian Ocean and the Indian subcontinent epidemics were caused by two different introductions of distinct strains of East/Central/South African genotype of CHIKV. The paraphyletic grouping of African CHIK viruses supports the historical evidence that the virus was introduced into Asia from Africa. Phylogenetic analysis divided Chikungunya virus isolates into three distinct genotypes based on geographical origins: the first, the West Africa genotype, consisted of isolates from Senegal and Nigeria; the second contained strains from East/Central/South African genotype, while the third contained solely Asian. The most recent common ancestor for the recent epidemic, which ravaged Indian Ocean islands and Indian subcontinent in 2004 – 2007, was found to date in 2002. Asian lineage dated about 1952 and exhibits similar spread patterns of the recent Indian Ocean outbreak lineage, with successive epidemics detected along an eastward path. Asian group splitted into two clades: an Indian lineage and a south east lineage. Outbreaks of Chikungunya virus fever in Asia have not been associated necessarily with outbreaks in Africa. Phylogenetic tools can reconstruct geographic spread of Chikungunya virus during the epidemics wave. The good management of patients with acute Chikungunya virus infection is essential for public health in susceptible areas with current Aedes spp activity

    The phylogenetic and evolutionary history of Kokobera virus.

    Get PDF
    Abstract Objective To estimate the genetic diversity of Kokobera virus, the date of origin and the spread among different viruses in the endemic regions of Australia. Methods Two datasets were built. The first consisting of 29 sequences of the NS5/3′ UTR region of Kokobera group downloaded from GenBank, the second including only 24 sequences of Kokobera viruses, focus is on this group. Results Bayesian time analysis revealed two different entries in Australia of Kokobera virus in the 50s years with the dated ancestor in 1861 year. Clades A and B showed a clear separation of the Kokobera sequences according to the geographic region. Conclusions Data from the study showed as Kokobera virus, despite of its ancient origin and its circulation before the European colonization, remained limited to the Australian country and nowadays limited mostly to the regions were Australian marsupials are mostly found

    Integrative genome-based survey of the SARS-CoV-2 Omicron XBB.1.16 variant

    Get PDF
    The XBB.1.16 SARS-CoV-2 variant, also known as Arcturus, is a recent descendant lineage of the recombinant XBB (nicknamed Gryphon). Compared to its direct progenitor, XBB.1, XBB.1.16 carries additional spike mutations in key antigenic sites, potentially conferring an ability to evade the immune response compared to other circulating lineages. In this context, we conducted a comprehensive genome-based survey to gain a detailed understanding of the evolution and potential dangers of the XBB.1.16 variant, which became dominant in late June. Genetic data indicates that the XBB.1.16 variant exhibits an evolutionary background with limited diversification, unlike dangerous lineages known for rapid changes. The evolutionary rate of XBB.1.16, which amounts to 3.95 × 10−4 subs/site/year, is slightly slower than that of its direct progenitors, XBB and XBB.1.5, which have been circulating for several months. A Bayesian Skyline Plot reconstruction suggests that the peak of genetic variability was reached in early May 2023, and currently, it is in a plateau phase with a viral population size similar to the levels observed in early March. Structural analyses indicate that, overall, the XBB.1.16 variant does not possess structural characteristics markedly different from those of the parent lineages, and the theoretical affinity for ACE2 does not seem to change among the compared variants. In conclusion, the genetic and structural analyses of SARS-CoV-2 XBB.1.16 do not provide evidence of its exceptional danger or high expansion capability. Detected differences with previous lineages are probably due to genetic drift, which allows the virus constant adaptability to the host, but they are not necessarily connected to a greater danger. Nevertheless, continuous genome-based monitoring is essential for a better understanding of its descendants and other lineages

    Genetic diversity in the env V1-V2 region of proviral quasispecies from long-term controller MHC-typed cynomolgus macaques infected with SHIVSF162P4cy

    Get PDF
    Intra-host evolution of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) has been shown by viral RNA analysis in subjects who naturally suppress plasma viremia to low levels, known as controllers. However, little is known about the variability of proviral DNA and the inter-relationships among contained systemic viremia, rate of reservoir reseeding and specific major histocompatibility complex (MHC) genotypes, in controllers. Here, we analysed the proviral DNA quasispecies of the env V1-V2 region, in PBMCs and in anatomical compartments of 13 long-term controller monkeys after 3.2 years of infection with simian/human immunodeficiency virus (SHIV)SF162P4cy. A considerable variation in the genetic diversity of proviral quasispecies was present among animals. Seven monkeys exhibited env V1-V2 proviral populations composed of both clusters of identical ancestral sequences and new variants, whereas the other six monkeys displayed relatively high env V1-V2 genetic diversity with a large proportion of diverse novel sequences. Our results demonstrate that in SHIVSF162P4cy-infected monkeys there exists a disparate pattern of intra-host viral diversity and that reseeding of the proviral reservoir occurs in some animals. Moreover, even though no particular association has been observed between MHC haplotypes and the long-term control of infection, a remarkably similar pattern of intra-host viral diversity and divergence was found within animals carrying the M3 haplotype. This suggests that in animals bearing the same MHC haplotype and infected with the same virus, viral diversity follows a similar pattern with similar outcomes and control of infection

    Genome-based survey of the SARS-CoV-2 BF.7 variant from Asia

    Get PDF
    The SARS-CoV-2 BF.7 variant represents one of the most recent subvariant under monitoring. At the beginning of the 2023 if caused several concerns especially in Asia because of a resurge in COVID-19 cases. Here we perform a genome-based integrative approach on SARS-CoV-2 BF.7 in order to shed light on this emerging lineage and produce some consideration on its real dangerousness. Both genetic and structural data suggest that this new variant currently does not show evidence of an high expansion capability. It is very common in Asia, but it appears less virulent than other Omicron variants as proved by its relatively low evolutionary rate (5.62 x 10-4 subs/sites/years). The last plateau has been reached around December 14, 2022 and then the genetic variability, and thus the viral population size, no longer increased. As already seen for several previous variants, the features that may be theoretically related to advantages are due to genetic drift that allows to the virus a constant adaptability to the host, but is not strictly connected to a fitness advantage. These results have further pointed that the genome-based monitoring must continue uninterruptedly in order to be prepared and well documented on the real situation. This article is protected by copyright. All rights reserved

    Genetic and structural analyses reveal the low potential of the SARS‐CoV‐2 EG.5 variant

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 EG.5 lineage is the latest variant under monitoring, and it is generating significant concern due to its recent upward trend in prevalence. Our aim was to gain insights into this emerging lineage and offer insights into its actual level of threat. Both genetic and structural data indicate that this novel variant presently lacks substantial evidence of having a high capacity for widespread transmission. Their viral population sizes expanded following a very mild curve and peaked several months after the earliest detected sample. Currently, neither the viral population size of EG.5 nor that of its first descendant is increasing. The genetic variability appear to be flattened, as evidenced by its relatively modest evolutionary rate (9.05 × 10−4 subs/site/year). As has been observed with numerous prior variants, attributes that might theoretically provide advantages seem to stem from genetic drift, enabling the virus to continually adjust to its host, albeit without a clear association with enhanced dangerousness. These findings further underscore the necessity for ongoing genome-based monitoring, ensuring preparedness and a well-documented understanding of the unfolding situation

    SARS-CoV-2 recombinants: genomic comparison between XBF and its parental lineages

    Get PDF
    Recombination events are very common and represent one of the primary drivers of RNA virus evolution. The XBF SARS-CoV-2 lineage is one of the most recently generated recombinants during the COVID-19 pandemic. It is a recombinant of BA.5.2.3 and BA.2.75.3, both descendants of lineages that caused many concerns (BA.5 and BA.2.75, respectively). Here, we performed a genomic survey focused on comparing the recombinant XBF with its parental lineages to provide a comprehensive assessment of the evolutionary potential, epidemiological trajectory, and potential risks. Genetic analyses indicated that although XBF initially showed the typical expansion depicted by a steep curve, causing several concerns, currently there is no indication of significant expansion potential or a contagion rate surpassing that of other currently active or previously prevalent lineages. BSP indicated that the peak has been reached around 19 October 2022 and then the genetic variability suffered slight oscillations until early 5 March 2023 when the population size reduced for the last time starting its last plateau that is still lasting. Structural analyses confirmed its reduced potential, also indicating that properties of NTDs and RBDs of XBF and its parental lineages present no significant difference. Of course, cautionary measures must still be taken and genome-based monitoring remains the best tool for detecting any important changes in viral genome composition

    Update of the Genetic Variability of Monkeypox Virus Clade IIb Lineage B.1

    Get PDF
    From 1 January 2022 to 31 May 2024, the World Health Organization (WHO) reported 97,745 laboratory-confirmed Mpox cases, including 203 deaths, across 116 countries. Despite a 2.3% decrease in new cases in May 2024 compared to April 2024, significant regional variations persist. The African Region reported the highest proportion of new cases, while other regions experienced mixed trends. Phylogenomic analyses of the Mpox virus Clade IIb lineage B.1 reveal stable genetic variability with minimal diversification. The Bayesian Skyline Plot indicates a generally stable viral population size with a modest peak in late 2023, followed by a decline. In general, the data indicate that the MPXV outbreak is primarily localized within a few consistent geographic clusters. The virus’s evolution is relatively slow, as indicated by its stable genetic variability, and Clade IIb lineage B.1 does not currently show signs of rapid genetic changes or population growth. The current low level of genetic diversity should not lead to complacency. Ongoing genomic surveillance is essential for effective outbreak management and understanding. This monitoring is crucial for identifying any shifts in the virus’s behavior or transmission, allowing for prompt public health responses and adjustments. In addition, continued vigilance is necessary to detect any new variants that might influence the outbreak’s trajectory

    Phylogenesis and Clinical Aspects of Pandemic 2009 Influenza A (H1N1) Virus Infection

    Get PDF
    During the spring of 2009, a new influenza A (H1N1) virus of swine origin emerged and spread worldwide causing a pandemic influenza. Here, 329 naso-pharyngeal swabs collected from patients with flu-like symptoms were analyzed by real-time PCR for the presence of H1N1 2009 pandemic virus. Twenty-five samples collected from immunocompetent and immunodepressed patients contained the H1N1 pandemic virus. Phylogenetic analysis of the hemagglutinin and neuraminidase genes showed no obvious differences in terms of similarity and/or homology between the sequences identified in immunocompetent individuals and those obtained from immunocompromised patients. Pre-existing clinical conditions may influence the outcome of H1N1 disease
    corecore