31 research outputs found

    Development of a Halotolerant Community in the St. Lucia Estuary (South Africa) during a Hypersaline Phase

    Get PDF
    Background: The St. Lucia Estuary, Africa’s largest estuarine lake, is currently experiencing unprecedented freshwater deprivation which has resulted in a northward gradient of drought effects, with hypersaline conditions in its northern lakes. Methodology/Principal Findings: This study documents the changes that occurred in the biotic communities at False Bay from May 2010 to June 2011, in order to better understand ecosystem functioning in hypersaline habitats. Few zooplankton taxa were able to withstand the harsh environmental conditions during 2010. These were the flatworm Macrostomum sp., the harpacticoid copepod Cletocamptus confluens, the cyclopoid copepod Apocyclops cf. dengizicus and the ciliate Fabrea cf. salina. In addition to their exceptional salinity tolerance, they were involved in a remarkably simple food web. In June 2009, a bloom of an orange-pigmented cyanobacterium (Cyanothece sp.) was recorded in False Bay and persisted uninterruptedly for 18 months. Stable isotope analysis suggests that this cyanobacterium was the main prey item of F. cf. salina. This ciliate was then consumed by A. cf. dengizicus, which in turn was presumably consumed by flamingos as they flocked in the area when the copepods attained swarming densities. On the shore, cyanobacteria mats contributed to a population explosion of the staphylinid beetle Bledius pilicollis. Although zooplankton disappeared once salinities exceeded 130, many taxa are capable of producing spores or resting cysts to bridge harsh periods. The hypersaline community was disrupted by heavy summer rains in 2011, which alleviated drought conditions and resulted in a sharp increase in zooplankton stock an

    Identification of G1-Regulated Genes in Normally Cycling Human Cells

    Get PDF
    BACKGROUND: Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked. METHODOLOGY AND FINDINGS: We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb) by qPCR to further validate the newly identified genes. CONCLUSION AND SIGNIFICANCE: Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells progressing normally through the cell division cycle. This group of genes may contain future targets for drug development and treatment of human disease

    First record of the freshwater copepod Eucyclops titicacae Kiefer, 1957, new rank (Copepoda, Cyclopoida) in Colombia

    No full text
    The freshwater cyclopoid copepod Eucyclops titicacae Kiefer, 1957, new rank, was previously known as a subspecies of E. neumani (Pesta, 1927). Hitherto, it was recorded only from Lake Titicaca in Peru and Lake Valencia in Venezuela. This species is here recorded from Laguna Navío Quebrado, La Guajira, northern Colombia. This is the first record of E. titicacae in Colombia and the third locality in which this species has been reported from. We provide comparative data on the morphology of this copepod. The Colombian specimens have the combination of diagnostic features of E. neumani titicacae as reported in both the original description and subsequent taxonomical accounts, including: 1) spinules on caudal rami not reaching halfway the outer margin; 2) caudal rami length/width ratio= 6.0; 3) length/width ratio of third endopodal segment of fourth leg=1.66; 4) inner spine of fifth leg being shorter than the two adjacent setae. The consistent morphologic differences and the isolation of E. neumani titicacae with respect to E. neumani neumani, each related to a different biogeographic subregion in South America, support the notion that these are two separate species, E. neumani and E. titicacae. Considering this interesting addition, the number of species of Eucyclops known from Colombia increases to 8; a key for the identification of these species is also provided

    Zooplankton of Lake Kivu

    Full text link
    peer reviewedThe dominant species of the crustacean plankton in Lake Kivu are the cyclopoid copepods Thermocyclops consimilis and Mesocyclops aequatorialis and the cladoceran Diaphanosoma excisum. Mean crustacean biomass over the period 2003–2004 was 0.99 g C m−2. The seasonal dynamics closely followed variations of chlorophyll a concentration and responded well to the dry season phytoplankton peak. The mean annual crustacean production rate was 23 g C m−2 year−1. The mean trophic transfer efficiency between phytoplankton and herbivorous zooplankton was equal to 6.8 %, indicating a coupling between both trophic levels similar to that in other East African Great lakes. These observations suggest a predominant bottom-up control of plankton dynamics and biomass in Lake Kivu. Whereas the present biomass of crustacean plankton in Lake Kivu is comparable to that of other African Rift lakes, the zooplankton biomass before Limnothrissa introduction was 2.6 g C m−2, based on estimation from available historical data. So, if the sardine introduction in the middle of the last century led to a threefold decrease of zooplankton biomass, it did not affect zooplankton production to a level which would lead to the collapse of the food web and of the fishery
    corecore