3,486 research outputs found
A dynamical collective calculation of supernova neutrino signals
We present the first calculations with three flavors of collective and shock
wave effects for neutrino propagation in core-collapse supernovae using
hydroynamical density profiles and the S matrix formalism. We explore the
interplay between the neutrino-neutrino interaction and the effects of multiple
resonances upon the time signal of positrons in supernova observatories. A
specific signature is found for the inverted hierarchy and a large third
neutrino mixing angle and we predict, in this case, a dearth of lower energy
positrons in Cherenkov detectors midway through the neutrino signal and the
simultaneous revelation of valuable information about the original fluxes. We
show that this feature is also observable with current generation neutrino
detectors at the level of several sigmas.Comment: 4 pages, 5 figure
The 1/N-expansion, quantum-classical correspondence and nonclassical states generation in dissipative higher-order anharmonic oscillators
We develop a method for the determination of thecdynamics of dissipative
quantum systems in the limit of large number of quanta N, based on the
1/N-expansion of Heidmann et al. [ Opt. Commun. 54, 189 (1985) ] and the
quantum-classical correspondence. Using this method, we find analytically the
dynamics of nonclassical states generation in the higher-order anharmonic
dissipative oscillators for an arbitrary temperature of a reservoir. We show
that the quantum correction to the classical motion increases with time
quadratically up to some maximal value, which is dependent on the degree of
nonlinearity and a damping constant, and then it decreases. Similarities and
differences with the corresponding behavior of the quantum corrections to the
classical motion in the Hamiltonian chaotic systems are discussed. We also
compare our results obtained for some limiting cases with the results obtained
by using other semiclassical tools and discuss the conditions for validity of
our approach.Comment: 15 pages, RevTEX (EPSF-style), 3 figs. Replaced with final version
(stylistic corrections
New Test of Supernova Electron Neutrino Emission using Sudbury Neutrino Observatory Sensitivity to the Diffuse Supernova Neutrino Background
Supernovae are rare nearby, but they are not rare in the Universe, and all
past core-collapse supernovae contributed to the Diffuse Supernova Neutrino
Background (DSNB), for which the near-term detection prospects are very good.
The Super-Kamiokande limit on the DSNB electron {\it antineutrino} flux,
cm s, is just above the
range of recent theoretical predictions based on the measured star formation
rate history. We show that the Sudbury Neutrino Observatory should be able to
test the corresponding DSNB electron {\it neutrino} flux with a sensitivity as
low as cm s,
improving the existing Mont Blanc limit by about three orders of magnitude.
While conventional supernova models predict comparable electron neutrino and
antineutrino fluxes, it is often considered that the first (and
forward-directed) SN 1987A event in the Kamiokande-II detector should be
attributed to electron-neutrino scattering with an electron, which would
require a substantially enhanced electron neutrino flux. We show that with the
required enhancements in either the burst or thermal phase fluxes, the
DSNB electron neutrino flux would generally be detectable in the Sudbury
Neutrino Observatory. A direct experimental test could then resolve one of the
enduring mysteries of SN 1987A: whether the first Kamiokande-II event reveals a
serious misunderstanding of supernova physics, or was simply an unlikely
statistical fluctuation. Thus the electron neutrino sensitivity of the Sudbury
Neutrino Observatory is an important complement to the electron antineutrino
sensitivity of Super-Kamiokande in the quest to understand the DSNB.Comment: 10 pages, 3 figure
New analysis of the SN 1987A neutrinos with a flexible spectral shape
We analyze the neutrino events from the supernova (SN) 1987A detected by the
Kamiokande II (KII) and Irvine-Michigan-Brookhaven (IMB) experiments. For the
time-integrated flux we assume a quasi-thermal spectrum of the form
where plays the role of a
spectral index. This simple representation not only allows one to fit the total
energy emitted in and the average energy
, but also accommodates a wide range of shapes, notably
anti-pinched spectra that are broader than a thermal distribution. We find that
the pile-up of low-energy events near threshold in KII forces the best-fit
value for $\alpha$ to the lowest value of any assumed prior range. This applies
to the KII events alone as well as to a common analysis of the two data sets.
The preference of the data for an ``unphysical'' spectral shape implies that
one can extract meaningful values for and only
if one fixes a prior value for . The tension between the KII and IMB
data sets and theoretical expectations for is not resolved by
an anti-pinched spectrum.Comment: to appear in PRD (6 pages, 6 eps figures
Using supernova neutrinos to monitor the collapse, to search for gravity waves and to probe neutrino masses
We discuss the importance of observing supernova neutrinos. By analyzing the
SN1987A observations of Kamiokande-II, IMB and Baksan, we show that they
provide a 2.5{\sigma} support to the standard scenario for the explosion. We
discuss in this context the use of neutrinos as trigger for the search of the
gravity wave impulsive emission. We derive a bound on the neutrino mass using
the SN1987A data and argue, using simulated data, that a future galactic
supernova could probe the sub-eV region.Comment: 8 pages, 1 figure. Proceeding for the Galileo-Xu Guangqi meeting: The
Sun, the Stars, the Universe and General Relativity; October 26-30, 2009,
Shanghai (China). Accepted for publication at International Journal of Modern
Physics
Decomposable representations and Lagrangian submanifolds of moduli spaces associated to surface groups
In this paper, we construct a Lagrangian submanifold of the moduli space
associated to the fundamental group of a punctured Riemann surface (the space
of representations of this fundamental group into a compact connected Lie
group). This Lagrangian submanifold is obtained as the fixed-point set of an
anti-symplectic involution defined on the moduli space. The notion of
decomposable representation provides a geometric interpretation of this
Lagrangian submanifold
Nonperturbative Contributions in an Analytic Running Coupling of QCD
In the framework of analytic approach to QCD the nonperturbative
contributions in running coupling of strong interaction up to 4-loop order are
obtained in an explicit form. For all they are shown to be
represented in the form of an expansion in inverse powers of Euclidean momentum
squared. The expansion coefficients are calculated for different numbers of
active quark flavors and for different number of loops taken into
account. On basis of the stated expansion the effective method for precise
calculation of the analytic running coupling can be developed.Comment: 9 pages, LaTeX, 1 table, 1 eps figur
On interrelations between Sibgatullin's and Alekseev's approaches to the construction of exact solutions of the Einstein-Maxwell equations
The integral equations involved in Alekseev's "monodromy transform" technique
are shown to be simple combinations of Sibgatullin's integral equations and
normalizing conditions. An additional complex conjugation introduced by
Alekseev in the integrands makes his scheme mathematically inconsistent;
besides, in the electrovac case all Alekseev's principal value integrals
contain an intrinsic error which has never been identified before. We also
explain how operates a non-trivial double-step algorithm devised by Alekseev
for rewriting, by purely algebraic manipulations and in a different (more
complicated) parameter set, any particular specialization of the known
analytically extended N-soliton electrovac solution obtained in 1995 with the
aid of Sibgatullin's method.Comment: 7 pages, no figures, section II extende
Nested T-duality
We identify the obstructions for T-dualizing the boundary WZW model and make
explicit how they depend on the geometry of branes. In particular, the
obstructions disappear for certain brane configurations associated to
non-regular elements of the Cartan torus. It is shown in this case that the
boundary WZW model is "nested" in the twisted boundary WZW model as the
dynamical subsystem of the latter.Comment: 13 page
Fractional and unquantized dc voltage generation in THz-driven semiconductor superlattices
We consider the spontaneous creation of a dc voltage across a strongly
coupled semiconductor superlattice subjected to THz radiation. We show that the
dc voltage may be approximately proportional either to an integer or to a half-
integer multiple of the frequency of the applied ac field, depending on the
ratio of the characteristic scattering rates of conducting electrons. For the
case of an ac field frequency less than the characteristic scattering rates, we
demonstrate the generation of an unquantized dc voltage.Comment: 6 pages, 3 figures, RevTEX, EPSF. Revised version v3: corrected typo
- …