40 research outputs found

    Depletion of the histone chaperone tNASP inhibits proliferation and induces apoptosis in prostate cancer PC-3 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>NASP (Nuclear Autoantigenic Sperm Protein) is a histone chaperone that is present in all dividing cells. NASP has two splice variants: tNASP and sNASP. Only cancer, germ, transformed, and embryonic cells have a high level of expression of the tNASP splice variant. We examined the consequences of tNASP depletion for prostate cancer PC-3 cells.</p> <p>Methods</p> <p>tNASP was depleted from prostate cancer PC-3 cells, cervical cancer HeLa cells, and prostate epithelial PWR-1E cells using lentivirus expression of tNASP shRNA. Cell cycle changes were studied by proliferation assay with CFSE labeling and double thymidine synchronization. Gene expression profiles were detected using RT<sup>2</sup>Profiler PCR Array, Western and Northern blotting.</p> <p>Results</p> <p>PC-3 and HeLa cells showed inhibited proliferation, increased levels of cyclin-dependant kinase inhibitor p21 protein and apoptosis, whereas non-tumorigenic PWR-1E cells did not. All three cell types showed decreased levels of HSPA2. Supporting in vitro experiments demonstrated that tNASP, but not sNASP is required for activation of HSPA2.</p> <p>Conclusions</p> <p>Our results demonstrate that PC-3 and HeLa cancer cells require tNASP to maintain high levels of HSPA2 activity and therefore viability, while PWR-1E cells are unaffected by tNASP depletion. These different cellular responses most likely arise from changes in the interaction between tNASP and HSPA2 and disturbed tNASP chaperoning of linker histones. This study has demonstrated that tNASP is critical for the survival of prostate cancer cells and suggests that targeting tNASP expression can lead to a new approach for prostate cancer treatment.</p

    Analysis of gene expression profiles in HeLa cells in response to overexpression or siRNA-mediated depletion of NASP

    Get PDF
    Abstract Background NASP (Nuclear Autoantigenic Sperm Protein) is a linker histone chaperone required for normal cell division. Changes in NASP expression significantly affect cell growth and development; loss of gene function results in embryonic lethality. However, the mechanism by which NASP exerts its effects in the cell cycle is not understood. To understand the pathways and networks that may involve NASP function, we evaluated gene expression in HeLa cells in which NASP was either overexpressed or depleted by siRNA. Methods Total RNA from HeLa cells overexpressing NASP or depleted of NASP by siRNA treatment was converted to cRNA with incorporation of Cy5-CTP (experimental samples), or Cy3-CTP (control samples). The labeled cRNA samples were hybridized to whole human genome microarrays (Agilent Technologies, Wilmington, Delaware, USA). Various gene expression analysis techniques were employed: Significance Analysis of Microarrays (SAM), Expression Analysis Systematic Explorer (EASE), and Ingenuity Pathways Analysis (IPA). Results From approximately 36 thousand genes present in a total human genome microarray, we identified a set of 47 up-regulated and 7 down-regulated genes as a result of NASP overexpression. Similarly we identified a set of 56 up-regulated and 71 down-regulated genes as a result of NASP siRNA treatment. Gene ontology, molecular network and canonical pathway analysis of NASP overexpression demonstrated that the most significant changes were in proteins participating in organismal injury, immune response, and cellular growth and cancer pathways (major "hubs": TNF, FOS, EGR1, NFκB, IRF7, STAT1, IL6). Depletion of NASP elicited the changed expression of proteins involved in DNA replication, repair and development, followed by reproductive system disease, and cancer and cell cycle pathways (major "hubs": E2F8, TP53, FGF, FSH, FST, hCG, NFκB, TRAF6). Conclusion This study has demonstrated that NASP belongs to a network of genes and gene functions that are critical for cell survival. We have confirmed the previously reported interactions between NASP and HSP90, HSP70, histone H1, histone H3, and TRAF6. Overexpression and depletion of NASP identified overlapping networks that included TNF as a core protein, confirming that both high and low levels of NASP are detrimental to cell cycle progression. Networks with cancer-related functions had the highest significance, however reproductive networks containing follistatin and FSH were also significantly affected, which confirmed NASP's important role in reproductive tissues. This study revealed that, despite some overlap, each response was associated with a unique gene signature and placed NASP in important cell regulatory networks

    Effects of Non-Thermal Plasma on Mammalian Cells

    Get PDF
    Thermal plasmas and lasers have been widely used in medicine to cut, ablate and cauterize tissues through heating; in contrast, non-thermal plasma produces no heat, so its effects can be selective. In order to exploit the potential for clinical applications, including wound healing, sterilization, blood coagulation, and cancer treatment, a mechanistic understanding of the interaction of non-thermal plasma with living tissues is required. Using mammalian cells in culture, it is shown here that non-thermal plasma created by dielectric barrier discharge (DBD) has dose-dependent effects that range from increasing cell proliferation to inducing apoptosis. It is also shown that these effects are primarily due to formation of intracellular reactive oxygen species (ROS). We have utilized γ-H2AX to detect DNA damage induced by non-thermal plasma and found that it is initiated by production of active neutral species that most likely induce formation of organic peroxides in cell medium. Phosphorylation of H2AX following non-thermal plasma treatment is ATR dependent and ATM independent, suggesting that plasma treatment may lead to replication arrest or formation of single-stranded DNA breaks; however, plasma does not lead to formation of bulky adducts/thymine dimers

    Association of NASP with HSP90 in Mouse Spermatogenic Cells: STIMULATION OF ATPase ACTIVITY AND TRANSPORT OF LINKER HISTONES INTO NUCLEI

    Get PDF
    NASP (nuclear autoantigenic sperm protein) is a linker histone-binding protein found in all dividing cells that is regulated by the cell cycle (Richardson, R. T., Batova, I. N., Widgren, E. E., Zheng, L. X., Whitfield, M., Marzluff, W. F., and O'Rand, M. G. (2000) J. Biol. Chem. 275, 30378-30386), and in the nucleus linker histones not bound to DNA are bound to NASP (Alekseev, O. M., Bencic, D. C., Richardson R. T., Widgren E. E., and O'Rand, M. G. (2003) J. Biol. Chem. 278, 8846-8852). In mouse spermatogenic cells tNASP binds the testis-specific linker histone H1t. Utilizing a cross-linker, 3,3'-dithiobissulfosuccinimidyl propionate, and mass spectrometry, we have identified HSP90 as a testis/embryo form of NASP (tNASP)-binding partner. In vitro assays demonstrate that the association of tNASP with HSP90 stimulated the ATPase activity of HSP90 and increased the binding of H1t to tNASP. HSP90 and tNASP are present in both nuclear and cytoplasmic fractions of mouse spermatogenic cells; however, HSP90 bound to NASP only in the cytoplasm. In vitro nuclear import assays on permeabilized HeLa cells demonstrate that tNASP, in the absence of any other cytoplasmic factors, transports linker histones into the nucleus in an energy and nuclear localization signal-dependent manner. Consequently we hypothesize that in the cytoplasm linker histones are bound to a complex containing NASP and HSP90 whose ATPase activity is stimulated by binding NASP. NASP-H1 is subsequently released from the complex and translocates to the nucleus where the H1 is released for binding to the DNA

    Overexpression of the Linker Histone-binding Protein tNASP Affects Progression through the Cell Cycle

    Get PDF
    NASP is an H1 histone-binding protein that is cell cycle-regulated and occurs in two major forms: tNASP, found in gametes, embryonic cells, and transformed cells; and sNASP, found in all rapidly dividing somatic cells (Richardson, R. T., Batova, I. N., Widgren, E. E., Zheng, L. X., Whitfield, M., Marzluff, W. F., and O'Rand, M. G. (2000) J. Biol. Chem. 275, 30378-30386). When full-length tNASP fused to green fluorescent protein (GFP) is transiently transfected into HeLa cells, it is efficiently transported into the nucleus within 2 h after translation in the cytoplasm, whereas the NASP nuclear localization signal (NLS) deletion mutant (NASP-DeltaNLS-GFP) is retained in the cytoplasm. In HeLa cells synchronized by a double thymidine block and transiently transfected to overexpress full-length tNASP or NASP-DeltaNLS, progression through the G(1)/S border is delayed. Cells transiently transfected to overexpress the histone-binding site (HBS) deletion mutant (NASP-DeltaHBS) or sNASP were not delayed in progression through the G(1)/S border. By using a DNA supercoiling assay, in vitro binding data demonstrate that H1 histone-tNASP complexes can transfer H1 histones to DNA, whereas NASP-DeltaHBS cannot. Measurement of NASP mobility in the nucleus by fluorescence recovery after photobleaching indicates that NASP mobility is virtually identical to that reported for H1 histones. These data suggest that NASP-H1 complexes exist in the nucleus and that tNASP can influence cell cycle progression through the G(1)/S border through mediation of DNA-H1 histone binding

    Analysis of gene expression profiles in HeLa cells in response to overexpression or siRNA-mediated depletion of NASP

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>NASP (Nuclear Autoantigenic Sperm Protein) is a linker histone chaperone required for normal cell division. Changes in NASP expression significantly affect cell growth and development; loss of gene function results in embryonic lethality. However, the mechanism by which NASP exerts its effects in the cell cycle is not understood. To understand the pathways and networks that may involve NASP function, we evaluated gene expression in HeLa cells in which NASP was either overexpressed or depleted by siRNA.</p> <p>Methods</p> <p>Total RNA from HeLa cells overexpressing NASP or depleted of NASP by siRNA treatment was converted to cRNA with incorporation of Cy5-CTP (experimental samples), or Cy3-CTP (control samples). The labeled cRNA samples were hybridized to whole human genome microarrays (Agilent Technologies, Wilmington, Delaware, USA). Various gene expression analysis techniques were employed: Significance Analysis of Microarrays (SAM), Expression Analysis Systematic Explorer (EASE), and Ingenuity Pathways Analysis (IPA).</p> <p>Results</p> <p>From approximately 36 thousand genes present in a total human genome microarray, we identified a set of 47 up-regulated and 7 down-regulated genes as a result of NASP overexpression. Similarly we identified a set of 56 up-regulated and 71 down-regulated genes as a result of NASP siRNA treatment. Gene ontology, molecular network and canonical pathway analysis of NASP overexpression demonstrated that the most significant changes were in proteins participating in organismal injury, immune response, and cellular growth and cancer pathways (major "hubs": TNF, FOS, EGR1, NFκB, IRF7, STAT1, IL6). Depletion of NASP elicited the changed expression of proteins involved in DNA replication, repair and development, followed by reproductive system disease, and cancer and cell cycle pathways (major "hubs": E2F8, TP53, FGF, FSH, FST, hCG, NFκB, TRAF6).</p> <p>Conclusion</p> <p>This study has demonstrated that NASP belongs to a network of genes and gene functions that are critical for cell survival. We have confirmed the previously reported interactions between NASP and HSP90, HSP70, histone H1, histone H3, and TRAF6. Overexpression and depletion of NASP identified overlapping networks that included TNF as a core protein, confirming that both high and low levels of NASP are detrimental to cell cycle progression. Networks with cancer-related functions had the highest significance, however reproductive networks containing follistatin and FSH were also significantly affected, which confirmed NASP's important role in reproductive tissues. This study revealed that, despite some overlap, each response was associated with a unique gene signature and placed NASP in important cell regulatory networks.</p

    3D heterotic string theory: new approach and extremal solutions

    Get PDF
    We develop a new formalism for the bosonic sector of low-energy heterotic string theory toroidally compactified to three dimensions. This formalism is based on the use of some single non-quadratic real matrix potential which transforms linearly under the action of subgroup of the three-dimensional charging symmetries. We formulate a new charging symmetry invariant approach for the symmetry generation and straightforward construction of asymptotically flat solutions. Finally, using the developed approach and the established formal analogy between the heterotic and Einstein-Maxwell theories, we construct a general class of the heterotic string theory extremal solutions of the Israel-Wilson-Perjes type. This class is asymptotically flat and charging symmetry complete; it includes the extremal solutions constructed before and possesses the non-trivial bosonic string theory limit.Comment: 20 pages in Late

    Analysis of the expression of human tumor antigens in ovarian cancer tissues

    Get PDF
    Biomarkers for early detection of cancer have great clinical diagnostic potential. Numerous reports have documented the generation of humoral immune responses that are triggered in response to changes in protein expression patterns in tumor tissues and these biomarkers are referred to as tumor associated antigens (TAAs). Using a high-throughput technology, we previously identified 65 proteins as diagnostically useful TAAs by profiling the humoral immune responses in ovarian cancer (OVCA) patients. Here we determined the expression status of some of those TAAs in tissues from OVCA patients. The protein expression patterns of 4 of those 65 antigens, namely NASP, RCAS1, Nijmegen breakage syndrome1 (NBS1) and eIF5A, along with p53 and Her2 (known molecular prognosticators) and two proteins that interact with NBS1, MRE11 and RAD50, were assessed by immunohistochemistry (IHC). NASP and RCAS1 proteins were more frequently expressed in ovarian cancer tissues than with normal ovarian tissue and serous cystadenomas and MRE11 was less frequently expressed. When evaluated simultaneously, only NASP and MRE11 remained statistically significant with sensitivity of 66% and specificity of 89%. None of these proteins’ expression levels were prognostic for survival. Together, our results indicate that occurrence of humoral immune responses against some of these TAAs in OVCA patients is triggered by antigen protein overexpression

    Genome Characterization of a Pathogenic Porcine Rotavirus B Strain Identified in Buryat Republic, Russia in 2015

    Get PDF
    Citation: Alekseev, K.P.; Penin, A.A.; Mukhin, A.N.; Khametova, K.M.; Grebennikova, T.V.; Yuzhakov, A.G.; Moskvina, A.S.; Musienko, M.I.; Raev, S.A.; Mishin, A.M.; Kotelnikov, A.P.; Verkhovsky, O.A.; Aliper, T.I.; Nepoklonov, E.A.; Herrera-Ibata, D.M.; Shepherd, F.K.; Marthaler, D.G. Genome Characterization of a Pathogenic Porcine Rotavirus B Strain Identified in Buryat Republic, Russia in 2015. Pathogens 2018, 7, 46.An outbreak of enteric disease of unknown etiology with 60% morbidity and 8% mortality in weaning piglets occurred in November 2015 on a farm in Buryat Republic, Russia. Metagenomic sequencing revealed the presence of rotavirus B in feces from diseased piglets while no other pathogens were identified. Clinical disease was reproduced in experimentally infected piglets, yielding the 11 RVB gene segments for strain Buryat15, with an RVB genotype constellation of G12-P[4]-I13-R4-C4-M4-A8-N10-T4-E4-H7. This genotype constellation has also been identified in the United States. While the Buryat15 VP7 protein lacked unique amino acid differences in the predicted neutralizing epitopes compared to the previously published swine RVB G12 strains, this report of RVB in Russian swine increases our epidemiological knowledge on the global prevalence and genetic diversity of RVB

    On the Hamiltonian formulation of the trigonometric spin Ruijsenaars-Schneider system

    Get PDF
    We suggest a Hamiltonian formulation for the spin Ruijsenaars–Schneider system in the trigonometric case. Within this interpretation, the phase space is obtained by a quasi-Hamiltonian reduction performed on (the cotangent bundle to) a representation space of a framed Jordan quiver. For arbitrary quivers, analogous varieties were introduced by Crawley-Boevey and Shaw, and their interpretation as quasi-Hamiltonian quotients was given by Van den Bergh. Using Van den Bergh’s formalism, we construct commuting Hamiltonian functions on the phase space and identify one of the flows with the spin Ruijsenaars–Schneider system. We then calculate all the Poisson brackets between local coordinates, thus answering an old question of Arutyunov and Frolov. We also construct a complete set of commuting Hamiltonians and integrate all the flows explicitly
    corecore