3 research outputs found

    The impact of Grey Heron (Ardea cinerea L.) colony on soil biogeochemistry and vegetation: a natural long-term in situ experiment in a planted pine forest

    Get PDF
    Increased anthropogenic pressure including intensification of agricultural activities leads to long-term decline of natural biotopes, with planted forests often considered as promising compensatory response, although reduced biodiversity and ecosystem stability represent their common drawbacks. Here we present a complex investigation of the impact of a large Grey Heron (Ardea cinerea L.) colony on soil biogeochemistry and vegetation in a planted Scots pine forest representing a natural in situ experiment on an engineered ecosystem. After settling around 2006, the colony expanded for 15 years, leading to the intensive deposition of nutrients with feces, food remains and feather thereby considerably altering the local soil biogeochemistry. Thus, lower pH levels around 4.5, 10- and 2-fold higher concentrations of phosphorous and nitrogen, as well as 1.2-fold discrepancies in K, Li, Mn, Zn and Co., respectively, compared to the surrounding control forest area could be observed. Unaltered total organic carbon (Corg) suggests repressed vegetation, as also reflected in the vegetation indices obtained by remote sensing. Moreover, reduced soil microbial diversity with considerable alternations in the relative abundance of Proteobacteria, Firmicutes, Acidobacteriota, Actinobacteriota, Verrucomicrobiota, Gemmatimonadota, Chujaibacter, Rhodanobacter, and Bacillus has been detected. The above alterations to the ecosystem also affected climate stress resilience of the trees indicated by their limited recovery from the major 2010 drought stress, in marked contrast to the surrounding forest (p = 3∙10−5). The complex interplay between geographical, geochemical, microbiological and dendrological characteristics, as well as their manifestation in the vegetation indices is explicitly reflected in the Bayesian network model. Using the Bayesian inference approach, we have confirmed the predictability of biodiversity patterns and trees growth dynamics given the concentrations of keynote soil biogeochemical alternations with correlations R > 0.8 between observations and predictions, indicating the capability of risk assessment that could be further employed for an informed forest management

    Development of a mobile-based intelligent module for identification and tracking of household appliances

    No full text
    Abstract Every year manufacturers of household appliances improve their devices, trying to make everyday life easier for users. New smart devices have many useful features, but not all users can easily cope with the complexity of the devices. One of the main tasks of household appliance manufacturers is to ensure the convenience of using appliances, taking into account the increasing complexity. Therefore, any manufacturer supplies equipment with a short but useful instruction manual. Practice shows that no printed user manual can compare with a demonstration of the device operation by a professional consultant. Instructions for home appliances using augmented reality technology will allow users to get the necessary detailed information about the device in a short period of time. As part of this work, the task of developing an artificial intelligence-based module is being solved. This module consists of developed classification, matching, and tracking submodules that can provide simple and fast visual instructions to users of household appliances in real time. The identification of household appliances is performed with more than 0.9 accuracy, and the tracking inside an unidentified object using the camera of a mobile device is processed with the success score of about 0.68 and frames per second (FPS) about 7. Mobile applications based on the proposed intelligent modules for Android and iOS were developed

    Microscopy Image Dataset for Deep Learning-Based Quantitative Assessment of Pulmonary Vascular Changes

    No full text
    Abstract Pulmonary hypertension (PH) is a syndrome complex that accompanies a number of diseases of different etiologies, associated with basic mechanisms of structural and functional changes of the pulmonary circulation vessels and revealed pressure increasing in the pulmonary artery. The structural changes in the pulmonary circulation vessels are the main limiting factor determining the prognosis of patients with PH. Thickening and irreversible deposition of collagen in the pulmonary artery branches walls leads to rapid disease progression and a therapy effectiveness decreasing. In this regard, histological examination of the pulmonary circulation vessels is critical both in preclinical studies and clinical practice. However, measurements of quantitative parameters such as the average vessel outer diameter, the vessel walls area, and the hypertrophy index claimed significant time investment and the requirement for specialist training to analyze micrographs. A dataset of pulmonary circulation vessels for pathology assessment using semantic segmentation techniques based on deep-learning is presented in this work. 609 original microphotographs of vessels, numerical data from experts’ measurements, and microphotographs with outlines of these measurements for each of the vessels are presented. Furthermore, here we cite an example of a deep learning pipeline using the U-Net semantic segmentation model to extract vascular regions. The presented database will be useful for the development of new software solutions for the analysis of histological micrograph
    corecore