53 research outputs found

    Remodelling by early-life stress of NMDA receptor-dependent synaptic plasticity in a gene-environment rat model of depression.

    Get PDF
    An animal model of depression combining genetic vulnerability and early-life stress (ELS) was prepared by submitting the Flinders Sensitive Line (FSL) rats to a standard paradigm of maternal separation. We analysed hippocampal synaptic transmission and plasticity in vivo and ionotropic receptors for glutamate in FSL rats, in their controls Flinders Resistant Line (FRL) rats, and in both lines subjected to ELS. A strong inhibition of long-term potentiation (LTP) and lower synaptic expression of NR1 subunit of the NMDA receptor were found in FSL rats. Remarkably, ELS induced a remodelling of synaptic plasticity only in FSL rats, reducing inhibition of LTP; this was accompanied by marked increase of synaptic NR1 subunit and GluR2/3 subunits of AMPA receptors. Chronic treatment with escitalopram inhibited LTP in FRL rats, but this effect was attenuated by prior ELS. The present results suggest that early gene-environment interactions cause lifelong synaptic changes affecting functional and molecular aspects of plasticity, partly reversed by antidepressant treatments

    Expression Profiling of a Genetic Animal Model of Depression Reveals Novel Molecular Pathways Underlying Depressive-Like Behaviours

    Get PDF
    The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression.In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL) and control Flinders Depression Resistant (FRL) lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7) and serotonergic receptors (Htr1a, Htr2a) in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL.These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research

    Neuropeptide Y and Calcitonin Gene-Related Peptide in Cerebrospinal Fluid in Parkinson’s Disease with Comorbid Depression versus Patients with Major Depressive Disorder

    No full text
    Parkinson’s disease (PD) is the second most common neurodegenerative disease in the world. The diagnosis of PD is based on movement dysfunctions. Many patients also suffer from comorbid depression in spite of adequate treatment with dopamine replacement, indicating that also other non-dopaminergic mechanisms are involved. Indeed, neuropeptides are critically implicated in the pathophysiology of major depressive disorder (MDD). To increase our understanding of the biochemical basis of depression in PD patients, we examined the levels of neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) in cerebrospinal fluid (CSF) from PD patients, with or without comorbid depression, and compared them to the levels in patients with MDD. We also compared the levels of NPY and CGRP with 5-hydroxyindoleacetic acid (5-HIAA), the major serotonin metabolite. Both NPY and CGRP were higher in PD patients with comorbid depression compared to MDD patients. No similar difference was found in 5-HIAA levels. Accordingly, there were no correlations between NPY and 5-HIAA or CGRP and 5-HIAA levels. The finding of higher NPY and CGRP CSF levels in PD patients with MDD raises the possibility that different pathophysiological processes may underlie depression in PD and MDD

    Escitalopram modulates neuron-remodelling proteins in a rat gene-environment interaction model of depression as revealed by proteomics. Part I: genetic background

    No full text
    The wide-scale analysis of protein expression provides a powerful strategy for the molecular exploration of complex pathophysiological mechanisms, such as the response to antidepressants. Using a 2D proteomic approach we investigated the Flinders Sensitive Line (FSL), a genetically selected rat model of depression, and the control Flinders Resistant Line (FRL). To evaluate gene-environment interactions, FSL and FRL pups were separated from their mothers for 3 h (maternal separation, MS), as early-life trauma is considered an important antecedent of depression. All groups were treated with either escitalopram (Esc) admixed to food (25 mg/kg.d) or vehicle for 1 month. At the week 3, forced swim tests were performed. Protein extracts from prefrontal/frontal cortex and hippocampus were separated by 2D electrophoresis. Proteins displaying statistically significant differences in expression levels were identified by mass spectrometry. Immobility time values in the forced swim test were higher in FSL rats and reduced by antidepressant treatment. Moreover, the Esc-induced reduction in immobility time was not detected in MS rats. The impact of genetic background in response to Esc was specifically investigated here. Bioinformatics analyses highlighted gene ontology terms showing tighter associations with the modulated proteins. Esc modulated protein belonging to cytoskeleton organization in FSL; carbohydrate metabolism and intracellular transport in FRL. Proteins differently modulated in the two strains after MS and Esc play a role in cytoskeleton organization, vesicle-mediated transport, apoptosis regulation and macromolecule catabolism. These findings suggest pathways involved in neuronal remodelling as molecular correlates of response to antidepressants in a model of vulnerability

    Escitalopram reduces increased hippocampal cytogenesis in a genetic rat depression model.

    No full text
    Hippocampal neurogenesis is potentially implicated in etiology of depression and as the final common mechanism underlying antidepressant treatments. However, decreased neurogenesis has not been demonstrated in depressed patients and, in animals, reduced cytogenesis was shown in healthy rats exposed to stressors, but, so far, not in models of depression. Here we report that the number of BrdU positive cells in hippocampus was (1) significantly higher in a rat model of depression, the Flinders Sensitive Line (FSL) compared to control FRL, (2) increased in both FSL and FRL following maternal separation, (3) reduced by escitalopram treatment in maternally separated animals to the level found in non-separated animals. These results argue against the prevailing hypothesis that adult cytogenesis is reduced in depression and that the common mechanism underlying antidepressant treatments is to increase adult cytogenesis. The results also point to the importance of using a disease model and not healthy animals for testing effects of potential treatments for human depression and suggest other cellular mechanisms of action than those that had previously been proposed for escitalopram

    Increased numbers of orexin/hypocretin neurons in a genetic rat depression model

    No full text
    The Flinders Sensitive Line (FSL) rat is a genetic animal model of depression that displays characteristics similar to those of depressed patients including lower body weight, decreased appetite and reduced REM sleep latency. Hypothalamic neuropeptides such as orexin/hypocretin, melanin-concentrating hormone (MCH) and cocaine and amphetamine regulated transcript (CART), that are involved in the regulation of both energy metabolism and sleep, have recently been implicated also in depression. We therefore hypothesized that alterations in these neuropeptide systems may play a role in the development of the FSL phenotype with both depressive like behavior, metabolic abnormalities and sleep disturbances. In this study, we first confirmed that the FSL rats displayed increased immobility in the Porsolt forced swim test compared to their control strain, the Flinders Resistant Line (FRL), which is indicative of depressive-like behavior. We then examined the number of orexin-, MCH- and CART-immunopositive neurons in the hypothalamus using stereological analyses. We found that the total number of orexin-positive neurons was higher in the hypothalamus of female FSL rats compared to female FRL rats, whereas no changes in the MCH or CART populations could be detected between the strains. Chronic treatment with the selective serotonin reuptake inhibitor (SSRI) escitalopram reduced immobility only in the FRL rats where it also increased the number of MCH positive neurons compared to untreated rats. These findings support the view that orexin may be involved in depression and strengthen the notion that the "depressed" brain responds differently to pharmacological interventions than the normal brain

    Escitalopram affects cytoskeleton and synaptic plasticity pathways in a rat gene-environment interaction model of depression as revealed by proteomics. Part II: environmental challenge

    No full text
    Large-scale investigations aimed at elucidating the molecular mechanism of action of antidepressant treatment are achievable through the application of proteomic technologies. We performed a proteomic study on the Flinders Sensitive Line (FSL), a genetically selected rat model of depression, and the control Flinders Resistant Line (FRL). To evaluate gene-environment interactions, FSL and FRL animals were separated from their mothers for 3 h from postnatal days 2 to 14 (maternal separation; MS), since early-life trauma is considered an important antecedent of depression. All groups received either escitalopram (Esc) admixed to food pellets (25 mg/kg.d) or vehicle for 1 month. Protein extracts from prefrontal/frontal cortex and hippocampus were separated by 2D electrophoresis. Proteins differentially modulated were identified by mass spectrometry. Bioinformatics analyses were performed to discover gene ontology terms associated with the modulated proteins. This paper was focused on the modifications induced by the environmental challenge of MS, both on the predisposed genetic background and on the resistant phenotype. The combination between Esc treatment and MS was investigated by comparing the MS, Esc-treated rats with rats subjected to each single procedure. In MS rats, antidepressant treatment influenced mainly proteins involved in carbohydrate metabolism in FSL rats and in vesicle-mediated transport in FRL rats. When studying the interaction between Esc and MS vs. non-separated rats, proteins playing a role in cytoskeleton organization, neuronal development, vesicle-mediated transport and synaptic plasticity were identified. The results provide further support to the available reports that antidepressant treatment affects intracellular pathways and also suggest new potential targets for future therapeutic intervention
    corecore